Coordinated Scheduling for Zero-Wait RGV/ASR Warehousing Systems with Finite Buffers

Efficient material handling is crucial in the logistics operations of modern salt warehouses, where Rail Guided Vehicles (RGVs) and Air Sorting Robots (ASRs) are often deployed to manage inbound and outbound tasks. However, as the number of tasks increases within a given period, conflicts and deadlo...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenbin Gu, Na Tang, Lei Wang, Zhenyang Guo, Yushang Cao, Minghai Yuan
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/13/7/546
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Efficient material handling is crucial in the logistics operations of modern salt warehouses, where Rail Guided Vehicles (RGVs) and Air Sorting Robots (ASRs) are often deployed to manage inbound and outbound tasks. However, as the number of tasks increases within a given period, conflicts and deadlocks between simultaneously operating RGVs and ASRs become more frequent, reducing efficiency and increasing energy consumption during transportation. To address this, the research frames the inbound and outbound problem as a task allocation issue for the RGV/ASR system with a finite buffer, and proposes a collision avoidance strategy and a zero-wait strategy for loaded machines to reallocate tasks. To improve computational efficiency, we introduce an adaptive multi-neighborhood hybrid search (AMHS) algorithm, which integrates a dual-sequence coding scheme and an elite solution initialization strategy. A dedicated global search operator is designed to expand the search landscape, while an adaptive local search operator, inspired by biological hormone regulation mechanisms, along with a perturbation strategy, is used to refine the local search. In a case study on packaged salt storage, the proposed AMHS algorithm reduced the total makespan by 30.1% compared to the original task queue. Additionally, in 15 randomized test scenarios, AMHS demonstrated superior performance over three benchmark algorithms—Genetic Algorithm (GA), Discrete Imperialist Competitive Algorithm (DICA), and Improved Whale Optimization Algorithm (IWOA)—achieving an average makespan reduction of 12.6% relative to GA.
ISSN:2075-1702