Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein‐Positive Cell Sensitization and Photothermal Therapy

The precision of photothermal therapy (PTT) is often hindered by the challenge of achieving selective delivery of thermoplasmonic nanostructures to tumors. Active targeting, which leverages synthetic molecular complexes to address receptors overexpressed by malignant cells, enables such specificity...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmed Alsadig, Xuan Peng, Hugo Boutier, Liliana R. Loureiro, Anja Feldmann, René Hübner, Humberto Cabrera, Manja Kubeil, Michael Bachmann, Larysa Baraban
Format: Article
Language:English
Published: Wiley-VCH 2025-08-01
Series:Small Science
Subjects:
Online Access:https://doi.org/10.1002/smsc.202500099
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849767881354510336
author Ahmed Alsadig
Xuan Peng
Hugo Boutier
Liliana R. Loureiro
Anja Feldmann
René Hübner
Humberto Cabrera
Manja Kubeil
Michael Bachmann
Larysa Baraban
author_facet Ahmed Alsadig
Xuan Peng
Hugo Boutier
Liliana R. Loureiro
Anja Feldmann
René Hübner
Humberto Cabrera
Manja Kubeil
Michael Bachmann
Larysa Baraban
author_sort Ahmed Alsadig
collection DOAJ
description The precision of photothermal therapy (PTT) is often hindered by the challenge of achieving selective delivery of thermoplasmonic nanostructures to tumors. Active targeting, which leverages synthetic molecular complexes to address receptors overexpressed by malignant cells, enables such specificity and facilitates the combination of the PTT with other anticancer therapies. In this study, we developed thermoplasmonic nanoconjugates consisting of (i) 20 nm spherical gold nanoparticles (AuNPs) or gold nanostars (AuNSs) as nanocarriers, and (ii) surface‐passivated antibody‐based fibroblast activation protein (FAP)‐targeting modules, used in adaptive chimeric antigen receptor T‐cells immunotherapy. The nanoconjugates demonstrated excellent stability and specific binding to FAP‐expressing fibrosarcoma HT1080 genetically modified to express human FAP, as confirmed by fluorescence activated cell sorting, immunofluorescence, and surface plasmon resonance scattering imaging. Moreover, the nanocarriers showed significant photothermal conversion after visible and near‐infrared irradiation. Quantitative thermal lens spectroscopy demonstrated the superior photothermal capability of AuNSs, achieving up to 1.5‐fold greater thermal enhancement than AuNPs under identical conditions. This synergistic approach, combining targeted immunotherapy with the thermoplasmonic nanocarriers, not only streamlines nanoparticle delivery, increasing photothermal yield and therapeutic efficacy but also offers a comprehensive and potent strategy for cancer treatment with the potential for superior outcomes across multiple modalities.
format Article
id doaj-art-ca2b3d5bed2a402296651af3349d505b
institution DOAJ
issn 2688-4046
language English
publishDate 2025-08-01
publisher Wiley-VCH
record_format Article
series Small Science
spelling doaj-art-ca2b3d5bed2a402296651af3349d505b2025-08-20T03:04:01ZengWiley-VCHSmall Science2688-40462025-08-0158n/an/a10.1002/smsc.202500099Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein‐Positive Cell Sensitization and Photothermal TherapyAhmed Alsadig0Xuan Peng1Hugo Boutier2Liliana R. Loureiro3Anja Feldmann4René Hübner5Humberto Cabrera6Manja Kubeil7Michael Bachmann8Larysa Baraban9Institute of Radiopharmaceutical Cancer Research Helmholtz‐Zentrum Dresden‐Rossendorf e. V. 01328 Dresden GermanyInstitute of Radiopharmaceutical Cancer Research Helmholtz‐Zentrum Dresden‐Rossendorf e. V. 01328 Dresden GermanyInstitute of Radiopharmaceutical Cancer Research Helmholtz‐Zentrum Dresden‐Rossendorf e. V. 01328 Dresden GermanyInstitute of Radiopharmaceutical Cancer Research Helmholtz‐Zentrum Dresden‐Rossendorf e. V. 01328 Dresden GermanyInstitute of Radiopharmaceutical Cancer Research Helmholtz‐Zentrum Dresden‐Rossendorf e. V. 01328 Dresden GermanyInstitute of Ion Beam Physics and Materials Research Helmholtz‐Zenztrum Dresden‐Rossendorf e. V. 01328 Dresden GermanyThe Abdus Salam International Centre for Theoretical Physics MLab STI Unit 34151 Trieste ItalyInstitute of Radiopharmaceutical Cancer Research Helmholtz‐Zentrum Dresden‐Rossendorf e. V. 01328 Dresden GermanyInstitute of Radiopharmaceutical Cancer Research Helmholtz‐Zentrum Dresden‐Rossendorf e. V. 01328 Dresden GermanyInstitute of Radiopharmaceutical Cancer Research Helmholtz‐Zentrum Dresden‐Rossendorf e. V. 01328 Dresden GermanyThe precision of photothermal therapy (PTT) is often hindered by the challenge of achieving selective delivery of thermoplasmonic nanostructures to tumors. Active targeting, which leverages synthetic molecular complexes to address receptors overexpressed by malignant cells, enables such specificity and facilitates the combination of the PTT with other anticancer therapies. In this study, we developed thermoplasmonic nanoconjugates consisting of (i) 20 nm spherical gold nanoparticles (AuNPs) or gold nanostars (AuNSs) as nanocarriers, and (ii) surface‐passivated antibody‐based fibroblast activation protein (FAP)‐targeting modules, used in adaptive chimeric antigen receptor T‐cells immunotherapy. The nanoconjugates demonstrated excellent stability and specific binding to FAP‐expressing fibrosarcoma HT1080 genetically modified to express human FAP, as confirmed by fluorescence activated cell sorting, immunofluorescence, and surface plasmon resonance scattering imaging. Moreover, the nanocarriers showed significant photothermal conversion after visible and near‐infrared irradiation. Quantitative thermal lens spectroscopy demonstrated the superior photothermal capability of AuNSs, achieving up to 1.5‐fold greater thermal enhancement than AuNPs under identical conditions. This synergistic approach, combining targeted immunotherapy with the thermoplasmonic nanocarriers, not only streamlines nanoparticle delivery, increasing photothermal yield and therapeutic efficacy but also offers a comprehensive and potent strategy for cancer treatment with the potential for superior outcomes across multiple modalities.https://doi.org/10.1002/smsc.202500099fibroblast activation proteingold nanoparticlesimmunotherapeutic target modulesphotothermal therapyspecific cell targetingthermal lens spectroscopy
spellingShingle Ahmed Alsadig
Xuan Peng
Hugo Boutier
Liliana R. Loureiro
Anja Feldmann
René Hübner
Humberto Cabrera
Manja Kubeil
Michael Bachmann
Larysa Baraban
Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein‐Positive Cell Sensitization and Photothermal Therapy
Small Science
fibroblast activation protein
gold nanoparticles
immunotherapeutic target modules
photothermal therapy
specific cell targeting
thermal lens spectroscopy
title Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein‐Positive Cell Sensitization and Photothermal Therapy
title_full Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein‐Positive Cell Sensitization and Photothermal Therapy
title_fullStr Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein‐Positive Cell Sensitization and Photothermal Therapy
title_full_unstemmed Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein‐Positive Cell Sensitization and Photothermal Therapy
title_short Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein‐Positive Cell Sensitization and Photothermal Therapy
title_sort exploring morphology of thermoplasmonic nanoparticles to synergize immunotherapeutic fibroblast activation protein positive cell sensitization and photothermal therapy
topic fibroblast activation protein
gold nanoparticles
immunotherapeutic target modules
photothermal therapy
specific cell targeting
thermal lens spectroscopy
url https://doi.org/10.1002/smsc.202500099
work_keys_str_mv AT ahmedalsadig exploringmorphologyofthermoplasmonicnanoparticlestosynergizeimmunotherapeuticfibroblastactivationproteinpositivecellsensitizationandphotothermaltherapy
AT xuanpeng exploringmorphologyofthermoplasmonicnanoparticlestosynergizeimmunotherapeuticfibroblastactivationproteinpositivecellsensitizationandphotothermaltherapy
AT hugoboutier exploringmorphologyofthermoplasmonicnanoparticlestosynergizeimmunotherapeuticfibroblastactivationproteinpositivecellsensitizationandphotothermaltherapy
AT lilianarloureiro exploringmorphologyofthermoplasmonicnanoparticlestosynergizeimmunotherapeuticfibroblastactivationproteinpositivecellsensitizationandphotothermaltherapy
AT anjafeldmann exploringmorphologyofthermoplasmonicnanoparticlestosynergizeimmunotherapeuticfibroblastactivationproteinpositivecellsensitizationandphotothermaltherapy
AT renehubner exploringmorphologyofthermoplasmonicnanoparticlestosynergizeimmunotherapeuticfibroblastactivationproteinpositivecellsensitizationandphotothermaltherapy
AT humbertocabrera exploringmorphologyofthermoplasmonicnanoparticlestosynergizeimmunotherapeuticfibroblastactivationproteinpositivecellsensitizationandphotothermaltherapy
AT manjakubeil exploringmorphologyofthermoplasmonicnanoparticlestosynergizeimmunotherapeuticfibroblastactivationproteinpositivecellsensitizationandphotothermaltherapy
AT michaelbachmann exploringmorphologyofthermoplasmonicnanoparticlestosynergizeimmunotherapeuticfibroblastactivationproteinpositivecellsensitizationandphotothermaltherapy
AT larysabaraban exploringmorphologyofthermoplasmonicnanoparticlestosynergizeimmunotherapeuticfibroblastactivationproteinpositivecellsensitizationandphotothermaltherapy