Neuroimaging features for cognitive fatigue and its recovery with VR intervention: An EEG microstates analysis

Introduction: Cognitive fatigue is mainly caused by enduring mental stress or monotonous work, impairing cognitive and physical performance. Natural scene exposure is a promising intervention for relieving cognitive fatigue, but the efficacy of virtual reality (VR) simulated natural scene exposure i...

Full description

Saved in:
Bibliographic Details
Main Authors: Jia-Cheng Han, Chi Zhang, Yan-Dong Cai, Yu-Ting Li, Yu-Xuan Shang, Zhu-Hong Chen, Guan Yang, Jia-Jie Song, Dan Su, Ke Bai, Jing-Ting Sun, Yu Liu, Na Liu, Ya Duan, Wen Wang
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Brain Research Bulletin
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0361923025000358
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introduction: Cognitive fatigue is mainly caused by enduring mental stress or monotonous work, impairing cognitive and physical performance. Natural scene exposure is a promising intervention for relieving cognitive fatigue, but the efficacy of virtual reality (VR) simulated natural scene exposure is unclear. We aimed to investigate the effect of VR natural scene on cognitive fatigue and further explored its underlying neurophysiological alterations with electroencephalogram (EEG) microstates analysis. Methods: Ten participants performed a 20-minute 1-back task before and after VR intervention while EEG was recorded (pre-task, post-task). Performance was measured with mean accuracy rate (MAR) and mean reaction time (MRT) of the continuous 1-back task. VR simulation of the Canal Town scene was utilized to alleviate cognitive fatigue caused by 1-back tasks. Four resting-state phases were identified: beginning, pre, post, and end phases. Results: Post-task had a higher MAR and a lower MRT than pre-task. For pre-task, MAR was negatively correlated with trials, while MRT was positively correlated with trials. Four EEG microstates classes (A-D) were identified, and their temporal parameters (mean duration, time coverage and occurrence) and transition probabilities were calculated. After intervention, mean duration and time coverage of class B decreased, all parameters of class C increased, while all parameters of class D decreased. Transition probabilities between classes B and D decreased but increased between classes A and C. Conclusion: VR simulation of Canal Town scene is a potentially effective method to alleviate cognitive fatigue. Microstate is an electrophysiological trait characteristic of cognitive fatigue and might be used to indicate the effect of VR intervention.
ISSN:1873-2747