Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes

The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion...

Full description

Saved in:
Bibliographic Details
Main Authors: Mariam Elizbarashvili, Nazibrola Beglarashvili, Mikheil Pipia, Elizbar Elizbarashvili, Nino Chikhradze
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/16/7/889
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational data from 63 meteorological stations for 1950–2022. Temperature trends were analyzed using linear regression, while vertical lapse rates and inversion layers were assessed based on seasonal temperature–elevation relationships. Precipitation regimes were evaluated through Mann-Kendall trend tests and Sen’s slope estimators. Results reveal that temperature regimes are strongly modulated by landscape type and elevation, with higher thermal variability in montane and subalpine zones. Seasonal temperature inversions are most frequent in spring and winter, especially in western lowlands and enclosed valleys. Precipitation patterns vary markedly across landscapes: humid lowlands show autumn–winter maxima, while arid and semi-arid zones peak in spring or late autumn. Some landscapes exhibit secondary maxima and minima, influenced by Mediterranean cyclones and regional atmospheric stability. Statistically significant trends include increasing cool-season precipitation in humid regions and decreasing spring rainfall in arid areas. These findings highlight the critical role of topography and landscape structure in shaping regional climate patterns and provide a foundation for improved climate modeling, ecological planning, and adaptation strategies in the Caucasus.
ISSN:2073-4433