A Novel Optimal Control Strategy of Four Drive Motors for an Electric Vehicle

Based on the mobility requirements of electric vehicles, four-wheel drive (4WD) can significantly enhance driving capability and increase operational flexibility in handling. If the output of different drive motors can be effectively controlled, energy losses during the distribution process can be r...

Full description

Saved in:
Bibliographic Details
Main Authors: Chien-Hsun Wu, Wei-Zhe Gao, Jie-Ming Yang
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/7/3505
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the mobility requirements of electric vehicles, four-wheel drive (4WD) can significantly enhance driving capability and increase operational flexibility in handling. If the output of different drive motors can be effectively controlled, energy losses during the distribution process can be reduced, thereby greatly improving overall efficiency. This study presents a simulation platform for an electric vehicle with four motors as power sources. This platform also consists of the driving cycle, driver, lithium-ion battery, vehicle dynamics, and energy management system models. Two rapid-prototyping controllers integrated with the required circuit to process analog-to-digital signal conversion for input and output are utilized to carry out a hardware-in-the-loop (HIL) simulation. The driving cycle, called NEDC (New European Driving Cycle), and FTP-75 (Federal Test Procedure 75) are used for evaluating the performance characteristics and response relationship among subsystems. A control strategy, called ECMS (Equivalent Consumption Minimization Strategy), is simulated and compared with the four-wheel average torque mode. The ECMS method considers different demanded powers and motor speeds, evaluating various drive motor power distribution combinations to search for motor power consumption and find the minimum value. As a result, it can identify the global optimal solution. Simulation results indicate that, compared to the average torque mode and rule-based control, in the pure simulation environment and HIL simulation during the UDDS driving cycle, the maximum improvement rates for pure electric energy efficiency for the 45 kW and 95 kW power systems are 6.1% and 6.0%, respectively. In the HIL simulation during the FTP-75 driving cycle, the maximum improvement rates for pure electric energy efficiency for the 45 kW and 95 kW power systems are 5.1% and 4.8%, respectively.
ISSN:2076-3417