Lie Symmetry and the Bethe Ansatz Solution of a New Quasi-Exactly Solvable Double-Well Potential
We study the Schrödinger equation with a new quasi-exactly solvable double-well potential. Exact expressions for the energies, the corresponding wave functions, and the allowed values of the potential parameters are obtained using two different methods, the Bethe ansatz method and the Lie algebraic...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2017-01-01
|
| Series: | Advances in High Energy Physics |
| Online Access: | http://dx.doi.org/10.1155/2017/2181532 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We study the Schrödinger equation with a new quasi-exactly solvable double-well potential. Exact expressions for the energies, the corresponding wave functions, and the allowed values of the potential parameters are obtained using two different methods, the Bethe ansatz method and the Lie algebraic approach. Some numerical results are reported and it is shown that the results are in good agreement with each other and with those obtained previously via a different method. |
|---|---|
| ISSN: | 1687-7357 1687-7365 |