Two-photon absorption under few-photon irradiation for optical nanoprinting

Abstract Two-photon absorption (TPA) has been widely applied for three-dimensional imaging and nanoprinting; however, the efficiency of TPA imaging and nanoprinting using laser scanning techniques is limited by its trade-off to reach high resolution. Here, we unveil a concept, few-photon irradiated...

Full description

Saved in:
Bibliographic Details
Main Authors: Zi-Xin Liang, Yuan-Yuan Zhao, Jing-Tao Chen, Xian-Zi Dong, Feng Jin, Mei-Ling Zheng, Xuan-Ming Duan
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-57390-9
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Two-photon absorption (TPA) has been widely applied for three-dimensional imaging and nanoprinting; however, the efficiency of TPA imaging and nanoprinting using laser scanning techniques is limited by its trade-off to reach high resolution. Here, we unveil a concept, few-photon irradiated TPA, supported by a spatiotemporal model based on the principle of wave-particle duality of light. This model describes the precise time-dependent mechanism of TPA under ultralow photon irradiance with a single tightly focused femtosecond laser pulse. We demonstrate that a feature size of 26 nm (1/20 λ) and a pattern period of 0.41 λ with a laser wavelength of 517 nm can be achieved by performing digital optical projection nanolithography under few-photon irradiation using the in-situ multiple exposure technique, improving printing efficiency by 5 orders of magnitude. We show deeper insights into the TPA mechanism and encourage the exploration of potential applications for TPA in nanoprinting and nanoimaging.
ISSN:2041-1723