Methods of suppressing ion migration in n-i-p perovskite solar cells

In the past 10 years, perovskite solar cells (PSCs) have undergone extremely rapid development, with a record certified power conversion efficiency (PCE) of 26.7%, which is very close to the limit efficiency. However, the inherent instability caused by ion migration impedes the realization of long-t...

Full description

Saved in:
Bibliographic Details
Main Authors: Dongmei He, Yue Yu, Xinxing Liu, Xuxia Shai, Jiangzhao Chen
Format: Article
Language:English
Published: Tsinghua University Press 2024-12-01
Series:iEnergy
Subjects:
Online Access:https://www.sciopen.com/article/10.23919/IEN.2024.0029
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the past 10 years, perovskite solar cells (PSCs) have undergone extremely rapid development, with a record certified power conversion efficiency (PCE) of 26.7%, which is very close to the limit efficiency. However, the inherent instability caused by ion migration impedes the realization of long-term operationally stable PSCs. In this review, the types and mechanisms of ion migration occurring in various functional layers of negative-intrinsic-positive (n-i-p) PSCs are summarized. Additionally, methods of suppressing ion migration are systematically discussed. Finally, the prospects of current challenges and future development directions are proposed to advance the achievement of high-performance regular PSCs with high stability and PCE.
ISSN:2771-9197