A framework for integrating genomics, microbial traits, and ecosystem biogeochemistry

Abstract Microbes drive the biogeochemical cycles of earth systems, yet the long-standing goal of linking emerging genomic information, microbial traits, mechanistic ecosystem models, and projections under climate change has remained elusive despite a wealth of emerging genomic information. Here we...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhen Li, William J. Riley, Gianna L. Marschmann, Ulas Karaoz, Ian A. Shirley, Qiong Wu, Nicholas J. Bouskill, Kuang-Yu Chang, Patrick M. Crill, Robert F. Grant, Eric King, Scott R. Saleska, Matthew B. Sullivan, Jinyun Tang, Ruth K. Varner, Ben J. Woodcroft, Kelly C. Wrighton, the EMERGE Biology Integration Institute Coordinators, Eoin L. Brodie
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-57386-5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850072270813265920
author Zhen Li
William J. Riley
Gianna L. Marschmann
Ulas Karaoz
Ian A. Shirley
Qiong Wu
Nicholas J. Bouskill
Kuang-Yu Chang
Patrick M. Crill
Robert F. Grant
Eric King
Scott R. Saleska
Matthew B. Sullivan
Jinyun Tang
Ruth K. Varner
Ben J. Woodcroft
Kelly C. Wrighton
the EMERGE Biology Integration Institute Coordinators
Eoin L. Brodie
author_facet Zhen Li
William J. Riley
Gianna L. Marschmann
Ulas Karaoz
Ian A. Shirley
Qiong Wu
Nicholas J. Bouskill
Kuang-Yu Chang
Patrick M. Crill
Robert F. Grant
Eric King
Scott R. Saleska
Matthew B. Sullivan
Jinyun Tang
Ruth K. Varner
Ben J. Woodcroft
Kelly C. Wrighton
the EMERGE Biology Integration Institute Coordinators
Eoin L. Brodie
author_sort Zhen Li
collection DOAJ
description Abstract Microbes drive the biogeochemical cycles of earth systems, yet the long-standing goal of linking emerging genomic information, microbial traits, mechanistic ecosystem models, and projections under climate change has remained elusive despite a wealth of emerging genomic information. Here we developed a general genome-to-ecosystem (G2E) framework for integrating genome-inferred microbial kinetic traits into mechanistic models of terrestrial ecosystems and applied it at a well-studied Arctic wetland by benchmarking predictions against observed greenhouse gas emissions. We found variation in genome-inferred microbial kinetic traits resulted in large differences in simulated annual methane emissions, quantitatively demonstrating that the genomically observable variations in microbial capacity are consequential for ecosystem functioning. Applying microbial community-aggregated traits via genome relative-abundance-weighting gave better methane emissions predictions (i.e., up to 54% decrease in bias) compared to ignoring the observed abundances, highlighting the value of combined trait inferences and abundances. This work provides an example of integrating microbial functional trait-based genomics, mechanistic and pragmatic trait parameterizations of diverse microbial metabolisms, and mechanistic ecosystem modeling. The generalizable G2E framework will enable the use of abundant microbial metagenomics data to improve predictions of microbial interactions in many complex systems, including oceanic microbiomes.
format Article
id doaj-art-c949aafbe8f949188ffd6e5755e01b9e
institution DOAJ
issn 2041-1723
language English
publishDate 2025-03-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-c949aafbe8f949188ffd6e5755e01b9e2025-08-20T02:47:06ZengNature PortfolioNature Communications2041-17232025-03-0116111110.1038/s41467-025-57386-5A framework for integrating genomics, microbial traits, and ecosystem biogeochemistryZhen Li0William J. Riley1Gianna L. Marschmann2Ulas Karaoz3Ian A. Shirley4Qiong Wu5Nicholas J. Bouskill6Kuang-Yu Chang7Patrick M. Crill8Robert F. Grant9Eric King10Scott R. Saleska11Matthew B. Sullivan12Jinyun Tang13Ruth K. Varner14Ben J. Woodcroft15Kelly C. Wrighton16the EMERGE Biology Integration Institute CoordinatorsEoin L. Brodie17Climate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryClimate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryClimate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryClimate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryClimate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryClimate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryClimate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryClimate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryDepartment of Geological Sciences and Bolin Centre for Climate Research, Stockholm UniversityDepartment of Renewable Resources, University of AlbertaDepartment of Biology, Consumnes River CollegeDepartment of Ecology and Evolutionary Biology, University of ArizonaDepartment of Microbiology, The Ohio State UniversityClimate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryDepartment of Earth Sciences and Institute for the Study of Earth, Oceans and Space, University of New HampshireCentre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research InstituteDepartment of Soil and Crop Sciences, Colorado State UniversityClimate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryAbstract Microbes drive the biogeochemical cycles of earth systems, yet the long-standing goal of linking emerging genomic information, microbial traits, mechanistic ecosystem models, and projections under climate change has remained elusive despite a wealth of emerging genomic information. Here we developed a general genome-to-ecosystem (G2E) framework for integrating genome-inferred microbial kinetic traits into mechanistic models of terrestrial ecosystems and applied it at a well-studied Arctic wetland by benchmarking predictions against observed greenhouse gas emissions. We found variation in genome-inferred microbial kinetic traits resulted in large differences in simulated annual methane emissions, quantitatively demonstrating that the genomically observable variations in microbial capacity are consequential for ecosystem functioning. Applying microbial community-aggregated traits via genome relative-abundance-weighting gave better methane emissions predictions (i.e., up to 54% decrease in bias) compared to ignoring the observed abundances, highlighting the value of combined trait inferences and abundances. This work provides an example of integrating microbial functional trait-based genomics, mechanistic and pragmatic trait parameterizations of diverse microbial metabolisms, and mechanistic ecosystem modeling. The generalizable G2E framework will enable the use of abundant microbial metagenomics data to improve predictions of microbial interactions in many complex systems, including oceanic microbiomes.https://doi.org/10.1038/s41467-025-57386-5
spellingShingle Zhen Li
William J. Riley
Gianna L. Marschmann
Ulas Karaoz
Ian A. Shirley
Qiong Wu
Nicholas J. Bouskill
Kuang-Yu Chang
Patrick M. Crill
Robert F. Grant
Eric King
Scott R. Saleska
Matthew B. Sullivan
Jinyun Tang
Ruth K. Varner
Ben J. Woodcroft
Kelly C. Wrighton
the EMERGE Biology Integration Institute Coordinators
Eoin L. Brodie
A framework for integrating genomics, microbial traits, and ecosystem biogeochemistry
Nature Communications
title A framework for integrating genomics, microbial traits, and ecosystem biogeochemistry
title_full A framework for integrating genomics, microbial traits, and ecosystem biogeochemistry
title_fullStr A framework for integrating genomics, microbial traits, and ecosystem biogeochemistry
title_full_unstemmed A framework for integrating genomics, microbial traits, and ecosystem biogeochemistry
title_short A framework for integrating genomics, microbial traits, and ecosystem biogeochemistry
title_sort framework for integrating genomics microbial traits and ecosystem biogeochemistry
url https://doi.org/10.1038/s41467-025-57386-5
work_keys_str_mv AT zhenli aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT williamjriley aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT giannalmarschmann aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT ulaskaraoz aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT ianashirley aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT qiongwu aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT nicholasjbouskill aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT kuangyuchang aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT patrickmcrill aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT robertfgrant aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT ericking aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT scottrsaleska aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT matthewbsullivan aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT jinyuntang aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT ruthkvarner aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT benjwoodcroft aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT kellycwrighton aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT theemergebiologyintegrationinstitutecoordinators aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT eoinlbrodie aframeworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT zhenli frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT williamjriley frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT giannalmarschmann frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT ulaskaraoz frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT ianashirley frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT qiongwu frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT nicholasjbouskill frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT kuangyuchang frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT patrickmcrill frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT robertfgrant frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT ericking frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT scottrsaleska frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT matthewbsullivan frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT jinyuntang frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT ruthkvarner frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT benjwoodcroft frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT kellycwrighton frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT theemergebiologyintegrationinstitutecoordinators frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry
AT eoinlbrodie frameworkforintegratinggenomicsmicrobialtraitsandecosystembiogeochemistry