On the Twistability of Partially Coherent, Schell-Model Sources
In this paper, the problem of assessing the twistability of a given bona fide cross-spectral density is tackled for the class of Schell-model sources, whose shift-invariant degree of coherence is represented by a real and symmetric function, denoted as <inline-formula><math xmlns="http...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Photonics |
Subjects: | |
Online Access: | https://www.mdpi.com/2304-6732/12/1/42 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832587671448322048 |
---|---|
author | Riccardo Borghi |
author_facet | Riccardo Borghi |
author_sort | Riccardo Borghi |
collection | DOAJ |
description | In this paper, the problem of assessing the twistability of a given bona fide cross-spectral density is tackled for the class of Schell-model sources, whose shift-invariant degree of coherence is represented by a real and symmetric function, denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mo>−</mo><mi mathvariant="bold-italic">r</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi mathvariant="bold-italic">r</mi><mo>)</mo></mrow></semantics></math></inline-formula>. By employing an abstract operatorial language, the problem of determining the highly degenerate spectrum of a twisted operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>W</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub></semantics></math></inline-formula> is addressed through a modal analysis based on the complete knowledge of the spectrum of the <i>sole</i> twist operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>T</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub></semantics></math></inline-formula>, as found by R. Simon and N. Mukunda. To this end, the evaluation of the complete tensor of the matrix elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>⟨</mo><msup><mi>n</mi><mo>′</mo></msup><mo>,</mo><msup><mi>ℓ</mi><mo>′</mo></msup><mo>|</mo><msub><mover accent="true"><mi>W</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub><mo>|</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>⟩</mo></mrow></semantics></math></inline-formula> is carried out within the framework of the so-called <i>extended Wigner distribution function</i>, a concept recently introduced by M. VanValkenburgh. As a nontrivial application of the algorithm developed here, the analytical determination of the spectrum of saturated twisted astigmatic Gaussian Schell-model sources is also presented. |
format | Article |
id | doaj-art-c9058f531f084bb2ae73ad1765f1ba74 |
institution | Kabale University |
issn | 2304-6732 |
language | English |
publishDate | 2025-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Photonics |
spelling | doaj-art-c9058f531f084bb2ae73ad1765f1ba742025-01-24T13:46:18ZengMDPI AGPhotonics2304-67322025-01-011214210.3390/photonics12010042On the Twistability of Partially Coherent, Schell-Model SourcesRiccardo Borghi0Departimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Università degli Studi “Roma Tre” 1, 00146 Rome, ItalyIn this paper, the problem of assessing the twistability of a given bona fide cross-spectral density is tackled for the class of Schell-model sources, whose shift-invariant degree of coherence is represented by a real and symmetric function, denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mo>−</mo><mi mathvariant="bold-italic">r</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi mathvariant="bold-italic">r</mi><mo>)</mo></mrow></semantics></math></inline-formula>. By employing an abstract operatorial language, the problem of determining the highly degenerate spectrum of a twisted operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>W</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub></semantics></math></inline-formula> is addressed through a modal analysis based on the complete knowledge of the spectrum of the <i>sole</i> twist operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>T</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub></semantics></math></inline-formula>, as found by R. Simon and N. Mukunda. To this end, the evaluation of the complete tensor of the matrix elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>⟨</mo><msup><mi>n</mi><mo>′</mo></msup><mo>,</mo><msup><mi>ℓ</mi><mo>′</mo></msup><mo>|</mo><msub><mover accent="true"><mi>W</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub><mo>|</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>⟩</mo></mrow></semantics></math></inline-formula> is carried out within the framework of the so-called <i>extended Wigner distribution function</i>, a concept recently introduced by M. VanValkenburgh. As a nontrivial application of the algorithm developed here, the analytical determination of the spectrum of saturated twisted astigmatic Gaussian Schell-model sources is also presented.https://www.mdpi.com/2304-6732/12/1/42mathematical physicsclassical opticsclassical coherence theorystatistical optics |
spellingShingle | Riccardo Borghi On the Twistability of Partially Coherent, Schell-Model Sources Photonics mathematical physics classical optics classical coherence theory statistical optics |
title | On the Twistability of Partially Coherent, Schell-Model Sources |
title_full | On the Twistability of Partially Coherent, Schell-Model Sources |
title_fullStr | On the Twistability of Partially Coherent, Schell-Model Sources |
title_full_unstemmed | On the Twistability of Partially Coherent, Schell-Model Sources |
title_short | On the Twistability of Partially Coherent, Schell-Model Sources |
title_sort | on the twistability of partially coherent schell model sources |
topic | mathematical physics classical optics classical coherence theory statistical optics |
url | https://www.mdpi.com/2304-6732/12/1/42 |
work_keys_str_mv | AT riccardoborghi onthetwistabilityofpartiallycoherentschellmodelsources |