On the Twistability of Partially Coherent, Schell-Model Sources

In this paper, the problem of assessing the twistability of a given bona fide cross-spectral density is tackled for the class of Schell-model sources, whose shift-invariant degree of coherence is represented by a real and symmetric function, denoted as <inline-formula><math xmlns="http...

Full description

Saved in:
Bibliographic Details
Main Author: Riccardo Borghi
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/12/1/42
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832587671448322048
author Riccardo Borghi
author_facet Riccardo Borghi
author_sort Riccardo Borghi
collection DOAJ
description In this paper, the problem of assessing the twistability of a given bona fide cross-spectral density is tackled for the class of Schell-model sources, whose shift-invariant degree of coherence is represented by a real and symmetric function, denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mo>−</mo><mi mathvariant="bold-italic">r</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi mathvariant="bold-italic">r</mi><mo>)</mo></mrow></semantics></math></inline-formula>. By employing an abstract operatorial language, the problem of determining the highly degenerate spectrum of a twisted operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>W</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub></semantics></math></inline-formula> is addressed through a modal analysis based on the complete knowledge of the spectrum of the <i>sole</i> twist operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>T</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub></semantics></math></inline-formula>, as found by R. Simon and N. Mukunda. To this end, the evaluation of the complete tensor of the matrix elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>⟨</mo><msup><mi>n</mi><mo>′</mo></msup><mo>,</mo><msup><mi>ℓ</mi><mo>′</mo></msup><mo>|</mo><msub><mover accent="true"><mi>W</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub><mo>|</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>⟩</mo></mrow></semantics></math></inline-formula> is carried out within the framework of the so-called <i>extended Wigner distribution function</i>, a concept recently introduced by M. VanValkenburgh. As a nontrivial application of the algorithm developed here, the analytical determination of the spectrum of saturated twisted astigmatic Gaussian Schell-model sources is also presented.
format Article
id doaj-art-c9058f531f084bb2ae73ad1765f1ba74
institution Kabale University
issn 2304-6732
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Photonics
spelling doaj-art-c9058f531f084bb2ae73ad1765f1ba742025-01-24T13:46:18ZengMDPI AGPhotonics2304-67322025-01-011214210.3390/photonics12010042On the Twistability of Partially Coherent, Schell-Model SourcesRiccardo Borghi0Departimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Università degli Studi “Roma Tre” 1, 00146 Rome, ItalyIn this paper, the problem of assessing the twistability of a given bona fide cross-spectral density is tackled for the class of Schell-model sources, whose shift-invariant degree of coherence is represented by a real and symmetric function, denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mo>−</mo><mi mathvariant="bold-italic">r</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi mathvariant="bold-italic">r</mi><mo>)</mo></mrow></semantics></math></inline-formula>. By employing an abstract operatorial language, the problem of determining the highly degenerate spectrum of a twisted operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>W</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub></semantics></math></inline-formula> is addressed through a modal analysis based on the complete knowledge of the spectrum of the <i>sole</i> twist operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>T</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub></semantics></math></inline-formula>, as found by R. Simon and N. Mukunda. To this end, the evaluation of the complete tensor of the matrix elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>⟨</mo><msup><mi>n</mi><mo>′</mo></msup><mo>,</mo><msup><mi>ℓ</mi><mo>′</mo></msup><mo>|</mo><msub><mover accent="true"><mi>W</mi><mo stretchy="false">^</mo></mover><mi>u</mi></msub><mo>|</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>⟩</mo></mrow></semantics></math></inline-formula> is carried out within the framework of the so-called <i>extended Wigner distribution function</i>, a concept recently introduced by M. VanValkenburgh. As a nontrivial application of the algorithm developed here, the analytical determination of the spectrum of saturated twisted astigmatic Gaussian Schell-model sources is also presented.https://www.mdpi.com/2304-6732/12/1/42mathematical physicsclassical opticsclassical coherence theorystatistical optics
spellingShingle Riccardo Borghi
On the Twistability of Partially Coherent, Schell-Model Sources
Photonics
mathematical physics
classical optics
classical coherence theory
statistical optics
title On the Twistability of Partially Coherent, Schell-Model Sources
title_full On the Twistability of Partially Coherent, Schell-Model Sources
title_fullStr On the Twistability of Partially Coherent, Schell-Model Sources
title_full_unstemmed On the Twistability of Partially Coherent, Schell-Model Sources
title_short On the Twistability of Partially Coherent, Schell-Model Sources
title_sort on the twistability of partially coherent schell model sources
topic mathematical physics
classical optics
classical coherence theory
statistical optics
url https://www.mdpi.com/2304-6732/12/1/42
work_keys_str_mv AT riccardoborghi onthetwistabilityofpartiallycoherentschellmodelsources