Comparative analysis of RNN versus IIR digital filtering to optimize resilience to dynamic perturbations in pH sensing for vertical farming

Abstract Vertical farming (VF) refers to systems of agriculture where crops are grown in trays stacked vertically by exposing them to artificial light and using sensing technology to improve product quality and yield. In this work, we propose an advanced filtering scheme based on recurrent neural ne...

Full description

Saved in:
Bibliographic Details
Main Authors: Rolando Hinojosa‐Meza, Martín Montes Rivera, Paulino Vacas‐Jacques, Nivia Escalante‐Garcia, José Alonso Dena‐Aguilar, Aldonso Becerra Sanchez, Ernesto Olvera‐Gonzalez
Format: Article
Language:English
Published: Wiley 2024-12-01
Series:Agrosystems, Geosciences & Environment
Online Access:https://doi.org/10.1002/agg2.70001
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850119279088762880
author Rolando Hinojosa‐Meza
Martín Montes Rivera
Paulino Vacas‐Jacques
Nivia Escalante‐Garcia
José Alonso Dena‐Aguilar
Aldonso Becerra Sanchez
Ernesto Olvera‐Gonzalez
author_facet Rolando Hinojosa‐Meza
Martín Montes Rivera
Paulino Vacas‐Jacques
Nivia Escalante‐Garcia
José Alonso Dena‐Aguilar
Aldonso Becerra Sanchez
Ernesto Olvera‐Gonzalez
author_sort Rolando Hinojosa‐Meza
collection DOAJ
description Abstract Vertical farming (VF) refers to systems of agriculture where crops are grown in trays stacked vertically by exposing them to artificial light and using sensing technology to improve product quality and yield. In this work, we propose an advanced filtering scheme based on recurrent neural networks (RNNs) and deep learning to enable efficient control strategies for VF applications. We demonstrate that the best RNN model incorporates five neuron layers, with the first and second containing 90 long short‐term memory neurons. The third layer implements one gated recurrent units neuron. The fourth segment incorporates one RNN network, while the output layer is designed by using a single neuron exhibiting a rectified linear activation function. By utilizing this RNN digital filter, we introduce two variations: (1) a scaled RNN model to tune the filter to the signal of interest, and (2) a moving average filter to eliminate harmonic oscillations of the output waveforms. The RNN models are contrasted with conventional digital Butterworth, Chebyshev I, Chebyshev II, and elliptic infinite impulse response (IIR) configurations. The RNN digital filtering schemes avoid introducing unwanted oscillations, which makes them more suitable for VF than their IIR counterparts. Finally, by utilizing the advanced features of scaling of the RNN model, we demonstrate that the RNN digital filter can be pH selective, as opposed to conventional IIR filters.
format Article
id doaj-art-c8defa6c354e4f13b140d681d5fe983a
institution OA Journals
issn 2639-6696
language English
publishDate 2024-12-01
publisher Wiley
record_format Article
series Agrosystems, Geosciences & Environment
spelling doaj-art-c8defa6c354e4f13b140d681d5fe983a2025-08-20T02:35:40ZengWileyAgrosystems, Geosciences & Environment2639-66962024-12-0174n/an/a10.1002/agg2.70001Comparative analysis of RNN versus IIR digital filtering to optimize resilience to dynamic perturbations in pH sensing for vertical farmingRolando Hinojosa‐Meza0Martín Montes Rivera1Paulino Vacas‐Jacques2Nivia Escalante‐Garcia3José Alonso Dena‐Aguilar4Aldonso Becerra Sanchez5Ernesto Olvera‐Gonzalez6Laboratorio de Iluminación Artificial Tecnológico Nacional de México/IT de Pabellón de Arteaga Aguascalientes MéxicoDepartamento de Investigación y Estudios de Posgrado Universidad Politécnica de Aguascalientes Aguascalientes MéxicoLaboratorio de Iluminación Artificial Tecnológico Nacional de México/IT de Pabellón de Arteaga Aguascalientes MéxicoLaboratorio de Iluminación Artificial Tecnológico Nacional de México/IT de Pabellón de Arteaga Aguascalientes MéxicoDepartamento de Ingenierías Tecnológico Nacional de México /IT de Pabellón de Arteaga Aguascalientes MéxicoUnidad Académica de Ingeniería Eléctrica Universidad Autónoma de Zacatecas Zacatecas MéxicoLaboratorio de Iluminación Artificial Tecnológico Nacional de México/IT de Pabellón de Arteaga Aguascalientes MéxicoAbstract Vertical farming (VF) refers to systems of agriculture where crops are grown in trays stacked vertically by exposing them to artificial light and using sensing technology to improve product quality and yield. In this work, we propose an advanced filtering scheme based on recurrent neural networks (RNNs) and deep learning to enable efficient control strategies for VF applications. We demonstrate that the best RNN model incorporates five neuron layers, with the first and second containing 90 long short‐term memory neurons. The third layer implements one gated recurrent units neuron. The fourth segment incorporates one RNN network, while the output layer is designed by using a single neuron exhibiting a rectified linear activation function. By utilizing this RNN digital filter, we introduce two variations: (1) a scaled RNN model to tune the filter to the signal of interest, and (2) a moving average filter to eliminate harmonic oscillations of the output waveforms. The RNN models are contrasted with conventional digital Butterworth, Chebyshev I, Chebyshev II, and elliptic infinite impulse response (IIR) configurations. The RNN digital filtering schemes avoid introducing unwanted oscillations, which makes them more suitable for VF than their IIR counterparts. Finally, by utilizing the advanced features of scaling of the RNN model, we demonstrate that the RNN digital filter can be pH selective, as opposed to conventional IIR filters.https://doi.org/10.1002/agg2.70001
spellingShingle Rolando Hinojosa‐Meza
Martín Montes Rivera
Paulino Vacas‐Jacques
Nivia Escalante‐Garcia
José Alonso Dena‐Aguilar
Aldonso Becerra Sanchez
Ernesto Olvera‐Gonzalez
Comparative analysis of RNN versus IIR digital filtering to optimize resilience to dynamic perturbations in pH sensing for vertical farming
Agrosystems, Geosciences & Environment
title Comparative analysis of RNN versus IIR digital filtering to optimize resilience to dynamic perturbations in pH sensing for vertical farming
title_full Comparative analysis of RNN versus IIR digital filtering to optimize resilience to dynamic perturbations in pH sensing for vertical farming
title_fullStr Comparative analysis of RNN versus IIR digital filtering to optimize resilience to dynamic perturbations in pH sensing for vertical farming
title_full_unstemmed Comparative analysis of RNN versus IIR digital filtering to optimize resilience to dynamic perturbations in pH sensing for vertical farming
title_short Comparative analysis of RNN versus IIR digital filtering to optimize resilience to dynamic perturbations in pH sensing for vertical farming
title_sort comparative analysis of rnn versus iir digital filtering to optimize resilience to dynamic perturbations in ph sensing for vertical farming
url https://doi.org/10.1002/agg2.70001
work_keys_str_mv AT rolandohinojosameza comparativeanalysisofrnnversusiirdigitalfilteringtooptimizeresiliencetodynamicperturbationsinphsensingforverticalfarming
AT martinmontesrivera comparativeanalysisofrnnversusiirdigitalfilteringtooptimizeresiliencetodynamicperturbationsinphsensingforverticalfarming
AT paulinovacasjacques comparativeanalysisofrnnversusiirdigitalfilteringtooptimizeresiliencetodynamicperturbationsinphsensingforverticalfarming
AT niviaescalantegarcia comparativeanalysisofrnnversusiirdigitalfilteringtooptimizeresiliencetodynamicperturbationsinphsensingforverticalfarming
AT josealonsodenaaguilar comparativeanalysisofrnnversusiirdigitalfilteringtooptimizeresiliencetodynamicperturbationsinphsensingforverticalfarming
AT aldonsobecerrasanchez comparativeanalysisofrnnversusiirdigitalfilteringtooptimizeresiliencetodynamicperturbationsinphsensingforverticalfarming
AT ernestoolveragonzalez comparativeanalysisofrnnversusiirdigitalfilteringtooptimizeresiliencetodynamicperturbationsinphsensingforverticalfarming