Scattering polarimetry enables correlative nerve fiber imaging and multimodal analysis

Abstract Mapping the intricate network of nerve fibers is crucial for understanding brain function. Three-Dimensional Polarized Light Imaging (3D-PLI) and Computational Scattered Light Imaging (ComSLI) map dense nerve fibers in brain sections with micrometer resolution using visible light. 3D-PLI re...

Full description

Saved in:
Bibliographic Details
Main Authors: Franca auf der Heiden, Markus Axer, Katrin Amunts, Miriam Menzel
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-02762-w
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Mapping the intricate network of nerve fibers is crucial for understanding brain function. Three-Dimensional Polarized Light Imaging (3D-PLI) and Computational Scattered Light Imaging (ComSLI) map dense nerve fibers in brain sections with micrometer resolution using visible light. 3D-PLI reconstructs 3D-fiber orientations, while ComSLI disentangles multiple directions per pixel. So far, these imaging techniques have been realized in separate setups. A combination within a single device would facilitate faster measurements, pixelwise mapping, cross-validation of fiber orientations, and leverage the advantages of each technique while mitigating their limitations. Here, we introduce the Scattering Polarimeter, a microscope that facilitates correlative large-area scans by integrating 3D-PLI and ComSLI measurements into a single system. Based on a Mueller polarimeter, it incorporates variable retarders and a large-area light source for direct and oblique illumination, enabling combined 3D-PLI and ComSLI measurements. Applied to human and vervet monkey brain sections, the Scattering Polarimeter generates results comparable to state-of-the-art 3D-PLI and ComSLI setups and creates a multimodal fiber direction map, integrating the robust fiber orientations obtained from 3D-PLI with fiber crossings from ComSLI. Furthermore, we discuss applications of the Scattering Polarimeter for unprecedented correlative and multimodal brain imaging.
ISSN:2045-2322