Fast Quantum Gates with Electric Field Pulses and Optical Tweezers in Trapped Ions
We propose a two-qubit phase gate based on trapped ions that uses fast electric field pulses and spin-dependent local traps generated by optical tweezers. The phases are engineered by spin-dependent coherent evolution, interspersed with momentum kicks. We derive a set of commensurability conditions...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Entropy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1099-4300/27/6/595 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We propose a two-qubit phase gate based on trapped ions that uses fast electric field pulses and spin-dependent local traps generated by optical tweezers. The phases are engineered by spin-dependent coherent evolution, interspersed with momentum kicks. We derive a set of commensurability conditions and expressions for the spin-dependent accumulated phase that, when satisfied, realize the target two-qubit phase gate within tens of microseconds. We study the scalability of our proposal in larger-ion crystals and demonstrate the existence of solutions with up to four ions. Gates in larger crystals should also be possible but will require more commensurability conditions to be fulfilled. |
|---|---|
| ISSN: | 1099-4300 |