Biomedical named entity recognition using improved green anaconda-assisted Bi-GRU-based hierarchical ResNet model

Abstract Background Biomedical text mining is a technique that extracts essential information from scientific articles using named entity recognition (NER). Traditional NER methods rely on dictionaries, rules, or curated corpora, which may not always be accessible. To overcome these challenges, deep...

Full description

Saved in:
Bibliographic Details
Main Authors: Ram Chandra Bhushan, Rakesh Kumar Donthi, Yojitha Chilukuri, Ulligaddala Srinivasarao, Polisetty Swetha
Format: Article
Language:English
Published: BMC 2025-01-01
Series:BMC Bioinformatics
Subjects:
Online Access:https://doi.org/10.1186/s12859-024-06008-w
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832571266347827200
author Ram Chandra Bhushan
Rakesh Kumar Donthi
Yojitha Chilukuri
Ulligaddala Srinivasarao
Polisetty Swetha
author_facet Ram Chandra Bhushan
Rakesh Kumar Donthi
Yojitha Chilukuri
Ulligaddala Srinivasarao
Polisetty Swetha
author_sort Ram Chandra Bhushan
collection DOAJ
description Abstract Background Biomedical text mining is a technique that extracts essential information from scientific articles using named entity recognition (NER). Traditional NER methods rely on dictionaries, rules, or curated corpora, which may not always be accessible. To overcome these challenges, deep learning (DL) methods have emerged. However, DL-based NER methods may need help identifying long-distance relationships within text and require significant annotated datasets. Results This research has proposed a novel model to address the challenges in natural language processing. The Improved Green anaconda-assisted Bi-GRU based Hierarchical ResNet BNER model (IGa-BiHR BNERM) is the model. IGa-BiHR BNERM model has shown promising results in accurately identifying named entities. The MACCROBAT dataset was obtained from Kaggle and underwent several pre-processing steps such as Stop Word Filtering, WordNet processing, Removal of non-alphanumeric characters, stemming Segmentation, and Tokenization, which is standardized and improves its quality. The pre-processed text was fed into a feature extraction model like the Robustly Optimized BERT –Whole Word Masking model. This model provides word embeddings with semantic information. Then, the BNER process utilized an Improved Green Anaconda-assisted Bi-GRU-based Hierarchical ResNet BNER model (IGa-BiHR BNERM). Conclusion To improve the training phase of the IGa-BiHR BNERM, the Improved Green Anaconda Optimization technique was used to select optimal weight parameter coefficients for training the model parameters. After the model was tested using the MACCROBAT dataset, it outperformed previous models with a tremendous accuracy rate of 99.11%. This model effectively and accurately identifies biomedical names within the text, significantly advancing this field.
format Article
id doaj-art-c872bdf1bc914a2c910b14a087c56825
institution Kabale University
issn 1471-2105
language English
publishDate 2025-01-01
publisher BMC
record_format Article
series BMC Bioinformatics
spelling doaj-art-c872bdf1bc914a2c910b14a087c568252025-02-02T12:45:00ZengBMCBMC Bioinformatics1471-21052025-01-0126113410.1186/s12859-024-06008-wBiomedical named entity recognition using improved green anaconda-assisted Bi-GRU-based hierarchical ResNet modelRam Chandra Bhushan0Rakesh Kumar Donthi1Yojitha Chilukuri2Ulligaddala Srinivasarao3Polisetty Swetha4Software Architect, Alstom Transport India LimitedDepartment of CSE GITAM (Deemed to be) UNIVERSITY HyderabadSt. Jude Childrens Cancer Research HospitalDepartment of CSE GITAM (Deemed to be) UNIVERSITY HyderabadDepartment of Information Technology, Vardhaman College of EngineeringAbstract Background Biomedical text mining is a technique that extracts essential information from scientific articles using named entity recognition (NER). Traditional NER methods rely on dictionaries, rules, or curated corpora, which may not always be accessible. To overcome these challenges, deep learning (DL) methods have emerged. However, DL-based NER methods may need help identifying long-distance relationships within text and require significant annotated datasets. Results This research has proposed a novel model to address the challenges in natural language processing. The Improved Green anaconda-assisted Bi-GRU based Hierarchical ResNet BNER model (IGa-BiHR BNERM) is the model. IGa-BiHR BNERM model has shown promising results in accurately identifying named entities. The MACCROBAT dataset was obtained from Kaggle and underwent several pre-processing steps such as Stop Word Filtering, WordNet processing, Removal of non-alphanumeric characters, stemming Segmentation, and Tokenization, which is standardized and improves its quality. The pre-processed text was fed into a feature extraction model like the Robustly Optimized BERT –Whole Word Masking model. This model provides word embeddings with semantic information. Then, the BNER process utilized an Improved Green Anaconda-assisted Bi-GRU-based Hierarchical ResNet BNER model (IGa-BiHR BNERM). Conclusion To improve the training phase of the IGa-BiHR BNERM, the Improved Green Anaconda Optimization technique was used to select optimal weight parameter coefficients for training the model parameters. After the model was tested using the MACCROBAT dataset, it outperformed previous models with a tremendous accuracy rate of 99.11%. This model effectively and accurately identifies biomedical names within the text, significantly advancing this field.https://doi.org/10.1186/s12859-024-06008-wBiomedical nameRecognitionWord embeddingROBERT-WWMBi-GRUHierarchical ResNet
spellingShingle Ram Chandra Bhushan
Rakesh Kumar Donthi
Yojitha Chilukuri
Ulligaddala Srinivasarao
Polisetty Swetha
Biomedical named entity recognition using improved green anaconda-assisted Bi-GRU-based hierarchical ResNet model
BMC Bioinformatics
Biomedical name
Recognition
Word embedding
ROBERT-WWM
Bi-GRU
Hierarchical ResNet
title Biomedical named entity recognition using improved green anaconda-assisted Bi-GRU-based hierarchical ResNet model
title_full Biomedical named entity recognition using improved green anaconda-assisted Bi-GRU-based hierarchical ResNet model
title_fullStr Biomedical named entity recognition using improved green anaconda-assisted Bi-GRU-based hierarchical ResNet model
title_full_unstemmed Biomedical named entity recognition using improved green anaconda-assisted Bi-GRU-based hierarchical ResNet model
title_short Biomedical named entity recognition using improved green anaconda-assisted Bi-GRU-based hierarchical ResNet model
title_sort biomedical named entity recognition using improved green anaconda assisted bi gru based hierarchical resnet model
topic Biomedical name
Recognition
Word embedding
ROBERT-WWM
Bi-GRU
Hierarchical ResNet
url https://doi.org/10.1186/s12859-024-06008-w
work_keys_str_mv AT ramchandrabhushan biomedicalnamedentityrecognitionusingimprovedgreenanacondaassistedbigrubasedhierarchicalresnetmodel
AT rakeshkumardonthi biomedicalnamedentityrecognitionusingimprovedgreenanacondaassistedbigrubasedhierarchicalresnetmodel
AT yojithachilukuri biomedicalnamedentityrecognitionusingimprovedgreenanacondaassistedbigrubasedhierarchicalresnetmodel
AT ulligaddalasrinivasarao biomedicalnamedentityrecognitionusingimprovedgreenanacondaassistedbigrubasedhierarchicalresnetmodel
AT polisettyswetha biomedicalnamedentityrecognitionusingimprovedgreenanacondaassistedbigrubasedhierarchicalresnetmodel