A Blockchain-Based Secure Data Transaction and Privacy Preservation Scheme in IoT System

With the explosive growth of Internet of Things (IoT) devices, massive amounts of heterogeneous data are continuously generated. However, IoT data transactions and sharing face multiple challenges such as limited device resources, untrustworthy network environment, highly sensitive user privacy, and...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing Wu, Zeteng Bian, Hongmin Gao, Yuzhe Wang
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/15/4854
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the explosive growth of Internet of Things (IoT) devices, massive amounts of heterogeneous data are continuously generated. However, IoT data transactions and sharing face multiple challenges such as limited device resources, untrustworthy network environment, highly sensitive user privacy, and serious data silos. How to achieve fine-grained access control and privacy protection for massive devices while ensuring secure and reliable data circulation has become a key issue that needs to be urgently addressed in the current IoT field. To address the above challenges, this paper proposes a blockchain-based data transaction and privacy protection framework. First, the framework builds a multi-layer security architecture that integrates blockchain and IPFS and adapts to the “end–edge–cloud” collaborative characteristics of IoT. Secondly, a data sharing mechanism that takes into account both access control and interest balance is designed. On the one hand, the mechanism uses attribute-based encryption (ABE) technology to achieve dynamic and fine-grained access control for massive heterogeneous IoT devices; on the other hand, it introduces a game theory-driven dynamic pricing model to effectively balance the interests of both data supply and demand. Finally, in response to the needs of confidential analysis of IoT data, a secure computing scheme based on CKKS fully homomorphic encryption is proposed, which supports efficient statistical analysis of encrypted sensor data without leaking privacy. Security analysis and experimental results show that this scheme is secure under standard cryptographic assumptions and can effectively resist common attacks in the IoT environment. Prototype system testing verifies the functional completeness and performance feasibility of the scheme, providing a complete and effective technical solution to address the challenges of data integrity, verifiable transactions, and fine-grained access control, while mitigating the reliance on a trusted central authority in IoT data sharing.
ISSN:1424-8220