Exploring the synergistic effects of drought and heat stress on chickpea seed development: Insights into nutritional quality and seed yield
Growing chickpea (Cicer arietinum L.) faces significant challenges due to rising temperatures and drought stress, particularly during the reproductive and seed-filling phases. This study investigated the single and joint impacts of drought and heat stress on seed development, focusing on the respons...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-12-01
|
| Series: | Plant Stress |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2667064X24002884 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850054833619337216 |
|---|---|
| author | Rashmi Awasthi Poonam Devi Uday Chand Jha Kamal Dev Sharma Manish Roorkiwal Sanjeev Kumar Ashwani Pareek Kadambot H.M. Siddique PV Vara Prasad Swarup K. Parida Harsh Nayyar |
| author_facet | Rashmi Awasthi Poonam Devi Uday Chand Jha Kamal Dev Sharma Manish Roorkiwal Sanjeev Kumar Ashwani Pareek Kadambot H.M. Siddique PV Vara Prasad Swarup K. Parida Harsh Nayyar |
| author_sort | Rashmi Awasthi |
| collection | DOAJ |
| description | Growing chickpea (Cicer arietinum L.) faces significant challenges due to rising temperatures and drought stress, particularly during the reproductive and seed-filling phases. This study investigated the single and joint impacts of drought and heat stress on seed development, focusing on the responses of drought-tolerant (DT) and drought-sensitive (DS) chickpea genotypes. Initially raised in an outdoor environment (mean day and night temperature of 27 and 16±1 °C, respectively, light intensity of 1230–1440 µmol m−2 s−1, relative humidity of 70/43 %) until seed filling (around 110–113 days after sowing) commenced. The plants were subsequently exposed to single or combined heat and drought stress under controlled conditions until maturity. Control pots were maintained at day and night temperature of 25 and 15 °C, respectively with 500 µmol m−2 s−1 light, 60–65 % RH, and regular irrigation, and drought-stressed pots were kept at 50 % field capacity under the same conditions of light and humidity. Heat stress in pots was gradually increased to 32(day)/20 °C (night) under regular irrigation, while combined stress pots experienced both drought (50 % field capacity) and heat stress conditions 32(day)/20 °C (night) under the same light and humidity conditions with irrigation. All stress treatments adversely affected cell membranes, photosynthesis, and water regulation, with more pronounced effects under combined stress. While heat stress increased stomatal conductance, drought and combined stress significantly reduced it. Seed filling rate and duration decreased under all stress conditions, especially combined stress. The stresses in combination severely reduced seed weight and pod numbers compared to individual stresses. Enzyme activities involved in starch and sucrose synthesis and hydrolysis substantially decreased under the combined stress. Seed composition elements (starch, storage proteins, sugars, fat, crude fiber, and ash) exhibited significant reductions across all stress treatments, particularly for the combined stress. Thus, under combined stresses, starch, proteins, and soulube sugars were markedly decreased to 13–20 %, 6.4–12.4 %, and 3–5 % in seeds, compared to 37–39 %, 21–24 %, and 6 % in control seeds. The DT genotype outperformed the DS genotype for all traits under individual and combined stress conditions. Principal component analysis revealed a complex interplay among various physiological responses (membrane damage, chlorophyll, chlorophyll fluorescence, relative leaf water content, and stomatal conductance), seed yield, and seed composition under the combined stress. This study highlighted that combined heat and drought stress severely impacted chickpea yield and nutritional traits, such as seed starch and protein content, compared to individual stresses underscoring the need to develop cultivars tolerant to this stress combination. |
| format | Article |
| id | doaj-art-c855fba7accc4236a8326a4a2b6107e0 |
| institution | DOAJ |
| issn | 2667-064X |
| language | English |
| publishDate | 2024-12-01 |
| publisher | Elsevier |
| record_format | Article |
| series | Plant Stress |
| spelling | doaj-art-c855fba7accc4236a8326a4a2b6107e02025-08-20T02:52:08ZengElsevierPlant Stress2667-064X2024-12-011410063510.1016/j.stress.2024.100635Exploring the synergistic effects of drought and heat stress on chickpea seed development: Insights into nutritional quality and seed yieldRashmi Awasthi0Poonam Devi1Uday Chand Jha2Kamal Dev Sharma3Manish Roorkiwal4Sanjeev Kumar5Ashwani Pareek6Kadambot H.M. Siddique7PV Vara Prasad8Swarup K. Parida9Harsh Nayyar10Department of Botany, Panjab University, Chandigarh 160014, IndiaDepartment of Botany, Panjab University, Chandigarh 160014, IndiaIndian Council for Agricultural Research (ICAR)- Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India; Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, USA; Corresponding author at: Indian Council for Agricultural Research (ICAR)- Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India.Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, IndiaKhalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab EmiratesCentre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, IndiaNational Agri-Food Biotechnology Institute, Mohali 140306, IndiaThe UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth, AustraliaFeed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, USANational Institute of Plant Genome Research (NIPGR), New Delhi 110001, IndiaDepartment of Botany, Panjab University, Chandigarh 160014, India; Corresponding author.Growing chickpea (Cicer arietinum L.) faces significant challenges due to rising temperatures and drought stress, particularly during the reproductive and seed-filling phases. This study investigated the single and joint impacts of drought and heat stress on seed development, focusing on the responses of drought-tolerant (DT) and drought-sensitive (DS) chickpea genotypes. Initially raised in an outdoor environment (mean day and night temperature of 27 and 16±1 °C, respectively, light intensity of 1230–1440 µmol m−2 s−1, relative humidity of 70/43 %) until seed filling (around 110–113 days after sowing) commenced. The plants were subsequently exposed to single or combined heat and drought stress under controlled conditions until maturity. Control pots were maintained at day and night temperature of 25 and 15 °C, respectively with 500 µmol m−2 s−1 light, 60–65 % RH, and regular irrigation, and drought-stressed pots were kept at 50 % field capacity under the same conditions of light and humidity. Heat stress in pots was gradually increased to 32(day)/20 °C (night) under regular irrigation, while combined stress pots experienced both drought (50 % field capacity) and heat stress conditions 32(day)/20 °C (night) under the same light and humidity conditions with irrigation. All stress treatments adversely affected cell membranes, photosynthesis, and water regulation, with more pronounced effects under combined stress. While heat stress increased stomatal conductance, drought and combined stress significantly reduced it. Seed filling rate and duration decreased under all stress conditions, especially combined stress. The stresses in combination severely reduced seed weight and pod numbers compared to individual stresses. Enzyme activities involved in starch and sucrose synthesis and hydrolysis substantially decreased under the combined stress. Seed composition elements (starch, storage proteins, sugars, fat, crude fiber, and ash) exhibited significant reductions across all stress treatments, particularly for the combined stress. Thus, under combined stresses, starch, proteins, and soulube sugars were markedly decreased to 13–20 %, 6.4–12.4 %, and 3–5 % in seeds, compared to 37–39 %, 21–24 %, and 6 % in control seeds. The DT genotype outperformed the DS genotype for all traits under individual and combined stress conditions. Principal component analysis revealed a complex interplay among various physiological responses (membrane damage, chlorophyll, chlorophyll fluorescence, relative leaf water content, and stomatal conductance), seed yield, and seed composition under the combined stress. This study highlighted that combined heat and drought stress severely impacted chickpea yield and nutritional traits, such as seed starch and protein content, compared to individual stresses underscoring the need to develop cultivars tolerant to this stress combination.http://www.sciencedirect.com/science/article/pii/S2667064X24002884Water stressHigh temperature stressChickpeaStress combination |
| spellingShingle | Rashmi Awasthi Poonam Devi Uday Chand Jha Kamal Dev Sharma Manish Roorkiwal Sanjeev Kumar Ashwani Pareek Kadambot H.M. Siddique PV Vara Prasad Swarup K. Parida Harsh Nayyar Exploring the synergistic effects of drought and heat stress on chickpea seed development: Insights into nutritional quality and seed yield Plant Stress Water stress High temperature stress Chickpea Stress combination |
| title | Exploring the synergistic effects of drought and heat stress on chickpea seed development: Insights into nutritional quality and seed yield |
| title_full | Exploring the synergistic effects of drought and heat stress on chickpea seed development: Insights into nutritional quality and seed yield |
| title_fullStr | Exploring the synergistic effects of drought and heat stress on chickpea seed development: Insights into nutritional quality and seed yield |
| title_full_unstemmed | Exploring the synergistic effects of drought and heat stress on chickpea seed development: Insights into nutritional quality and seed yield |
| title_short | Exploring the synergistic effects of drought and heat stress on chickpea seed development: Insights into nutritional quality and seed yield |
| title_sort | exploring the synergistic effects of drought and heat stress on chickpea seed development insights into nutritional quality and seed yield |
| topic | Water stress High temperature stress Chickpea Stress combination |
| url | http://www.sciencedirect.com/science/article/pii/S2667064X24002884 |
| work_keys_str_mv | AT rashmiawasthi exploringthesynergisticeffectsofdroughtandheatstressonchickpeaseeddevelopmentinsightsintonutritionalqualityandseedyield AT poonamdevi exploringthesynergisticeffectsofdroughtandheatstressonchickpeaseeddevelopmentinsightsintonutritionalqualityandseedyield AT udaychandjha exploringthesynergisticeffectsofdroughtandheatstressonchickpeaseeddevelopmentinsightsintonutritionalqualityandseedyield AT kamaldevsharma exploringthesynergisticeffectsofdroughtandheatstressonchickpeaseeddevelopmentinsightsintonutritionalqualityandseedyield AT manishroorkiwal exploringthesynergisticeffectsofdroughtandheatstressonchickpeaseeddevelopmentinsightsintonutritionalqualityandseedyield AT sanjeevkumar exploringthesynergisticeffectsofdroughtandheatstressonchickpeaseeddevelopmentinsightsintonutritionalqualityandseedyield AT ashwanipareek exploringthesynergisticeffectsofdroughtandheatstressonchickpeaseeddevelopmentinsightsintonutritionalqualityandseedyield AT kadambothmsiddique exploringthesynergisticeffectsofdroughtandheatstressonchickpeaseeddevelopmentinsightsintonutritionalqualityandseedyield AT pvvaraprasad exploringthesynergisticeffectsofdroughtandheatstressonchickpeaseeddevelopmentinsightsintonutritionalqualityandseedyield AT swarupkparida exploringthesynergisticeffectsofdroughtandheatstressonchickpeaseeddevelopmentinsightsintonutritionalqualityandseedyield AT harshnayyar exploringthesynergisticeffectsofdroughtandheatstressonchickpeaseeddevelopmentinsightsintonutritionalqualityandseedyield |