Study on the Shear Performance of MMOM Stay-in-Place Formwork Beams Reinforced with Perforated Steel Pipe Skeleton
The simulation analysis of a novel stay-in-place formwork (SIPF) beam reinforced with perforated steel pipe skeleton was conducted. The SIPF beam consists of a modified magnesium oxysulfide mortar (MMOM) formwork, a square steel pipe skeleton with holes dug on the sides and top, and cast-in-place co...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Buildings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-5309/15/15/2638 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The simulation analysis of a novel stay-in-place formwork (SIPF) beam reinforced with perforated steel pipe skeleton was conducted. The SIPF beam consists of a modified magnesium oxysulfide mortar (MMOM) formwork, a square steel pipe skeleton with holes dug on the sides and top, and cast-in-place concrete. The finite element (FE) analysis model of the SIPF beam was established by using the ABAQUS CAE 2021 software, and simulation analysis was conducted with the shear span ratio (SSR), the distance between the remaining steel strips, and the strength of concrete as the variation parameters. The results show that the stiffness and shear capacity of the SIPF beam decrease with the increase in SSR and increase with the decrease in strip spacing. Under the same conditions, when the concrete strength grade is increased from C30 to C50, the shear bearing capacity of the SIPF beam increases by 11.8% to 16.2%. When the spacing of the steel strips is reduced from 200 mm to 150 mm, the shear bearing capacity can be increased by 12.7% to 31.5%. When the SSR increases from 1.5 to 3.0, the shear bearing capacity decreases by 26.9% to 37.3%. Moreover, with the increase in the SSR, the influence of the steel strip spacing on the shear bearing capacity of the SIPF beam improves, while the influence of the concrete strength on the shear bearing capacity decreases. Taking parameters such as SSR, steel strip spacing, and concrete strength as variables, the influence of steel pipe constraining the core concrete on the shear bearing capacity was considered. The calculation formula for the shear bearing capacity of the SIPF beam with perforated steel pipe skeleton was established. The calculation results fit well with the laboratory test and simulation test results and can be used for the design and calculation of engineering structures. |
|---|---|
| ISSN: | 2075-5309 |