One-Step Fabrication of Poly(vinylidene Fluoride-Co-Hexafluoropropylene)/Perfluorodecyltriethoxysilane Fibrous Membranes with Waterproof, Breathable, and Radiative Cooling Properties

Functional membranes with waterproof, breathable, and thermal regulation capabilities are increasingly sought after across various industries. However, developing such functional membranes commonly involves complex multi-step preparation processes. Herein, we introduced perfluorodecyltriethoxysilane...

Full description

Saved in:
Bibliographic Details
Main Authors: Aohan Hou, Juan Xie, Xiaohui Wu, Guichun Lin, Yayi Yuan, Xi Liu, Yancheng Wu, Feng Gan, Yangling Li, Yuxiao Wu, Gang Huang, Zhengrong Li, Jing Zhao
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/4/763
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Functional membranes with waterproof, breathable, and thermal regulation capabilities are increasingly sought after across various industries. However, developing such functional membranes commonly involves complex multi-step preparation processes. Herein, we introduced perfluorodecyltriethoxysilane (FAS) into the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) solution for one-step electrospinning, successfully fabricating membranes that combine these properties. The hydrophobicity of the PVDF-HFP/FAS membrane was greatly improved with the water contact angle increased from 120.6° to 142.9° and the solar reflectance rising from 72% to 92% due to the presence of fluorocarbon segments. The synergistic effect of enhanced hydrophobicity, small pore size, and elevated solar reflectivity resulted in robust water resistance (62 kPa), excellent water vapor transmission rate (12.4 kg m<sup>−2</sup> d<sup>−1</sup>), and superior cooling performance (6.4 °C lower than commercial cotton fabrics). These findings suggest that the proposed PVDF-HFP/FAS membranes, characterized by desired multifunction characteristics and scalable production, hold great potential for application in diverse strategic fields.
ISSN:1420-3049