Aspect-Based Sentiment Analysis Through Graph Convolutional Networks and Joint Task Learning

Aspect-based sentiment analysis (ABSA) through joint task learning aims to simultaneously identify aspect terms and predict their sentiment polarities. However, existing methods face two major challenges: (1) Most existing studies focus on the sentiment polarity classification task, ignoring the cri...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongyu Han, Shengjie Wang, Baojun Qiao, Lanxue Dang, Xiaomei Zou, Hui Xue, Yingqi Wang
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/16/3/201
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aspect-based sentiment analysis (ABSA) through joint task learning aims to simultaneously identify aspect terms and predict their sentiment polarities. However, existing methods face two major challenges: (1) Most existing studies focus on the sentiment polarity classification task, ignoring the critical role of aspect term extraction, leading to insufficient performance in capturing aspect-related information; (2) existing methods typically model the two tasks independently, failing to effectively share underlying features and semantic information, which weakens the synergy between the tasks and limits the overall performance of the model. In order to resolve these issues, this research suggests a unified framework model through joint task learning, named MTL-GCN, to simultaneously perform aspect term extraction and sentiment polarity classification. The proposed model utilizes dependency trees combined with self-attention mechanisms to generate new weight matrices, emphasizing the locational information of aspect terms, and optimizes the graph convolutional network (GCN) to extract aspect terms more efficiently. Furthermore, the model employs the multi-head attention (MHA) mechanism to process input data and uses its output as the input to the GCN. Next, GCN models the graph structure of the input data, capturing the relationships between nodes and global structural information, fully integrating global contextual semantic information, and generating deep-level contextual feature representations. Finally, the extracted aspect-related features are fused with global features and applied to the sentiment classification task. The proposed unified framework achieves state-of-the-art performance, as evidenced by experimental results on four benchmark datasets. MTL-GCN outperforms baseline models in terms of F1<sub>ATE</sub>, accuracy, and F1<sub>SC</sub> metrics, as demonstrated by experimental results on four benchmark datasets. Additionally, comparative and ablation studies further validate the rationale and effectiveness of the model design.
ISSN:2078-2489