Molecular Imaging in Tumor Angiogenesis and Relevant Drug Research
Molecular imaging, including fluorescence imaging (FMI), bioluminescence imaging (BLI), positron emission tomography (PET), single-photon emission-computed tomography (SPECT), and computed tomography (CT), has a pivotal role...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2011-01-01
|
Series: | International Journal of Biomedical Imaging |
Online Access: | http://dx.doi.org/10.1155/2011/370701 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Molecular imaging,
including fluorescence imaging (FMI),
bioluminescence imaging (BLI), positron emission
tomography (PET), single-photon emission-computed tomography (SPECT), and computed tomography
(CT), has a pivotal role in the
process of tumor and relevant drug research. CT,
especially Micro-CT, can provide the anatomic
information for a region of interest (ROI); PET
and SPECT can provide functional information for
the ROI. BLI and FMI can provide optical
information for an ROI. Tumor angiogenesis and
relevant drug development is a lengthy,
high-risk, and costly process, in which a novel
drug needs about 10–15 years of testing to
obtain Federal Drug Association (FDA) approval.
Molecular imaging can enhance the development
process by understanding the tumor mechanisms
and drug activity. In this paper, we focus on
tumor angiogenesis, and we review the
characteristics of molecular imaging modalities
and their applications in tumor angiogenesis and
relevant drug research. |
---|---|
ISSN: | 1687-4188 1687-4196 |