FPGA-Based Particle Swarm Collaborative Target Localization Algorithm for UAV Swarms

To achieve precise collaborative localization of multiple unmanned aerial vehicles (UAVs) in hardware environments, this paper presents an field-programmable gate array-based particle swarm optimization (PSO) algorithm aimed at enhancing the localization efficiency of multiple nodes targeting a spec...

Full description

Saved in:
Bibliographic Details
Main Authors: Chuanhao Zhang, Changsheng Li, Zhipeng Chen, Haojie Li, Hang Yu
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/8/2462
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To achieve precise collaborative localization of multiple unmanned aerial vehicles (UAVs) in hardware environments, this paper presents an field-programmable gate array-based particle swarm optimization (PSO) algorithm aimed at enhancing the localization efficiency of multiple nodes targeting a specific object. By leveraging the unique computational capabilities of FPGA, the proposed algorithm integrates optimization strategies, including particle mutation, variable crossover probabilities, and adjustable weights. These strategies collectively enhance the performance of the PSO algorithm in localization tasks. Comparative simulations conducted across a range of operational scenarios demonstrate that the algorithm not only ensures high localization accuracy but also delivers excellent real-time performance and rapid convergence. To further validate the algorithm’s practical applicability, a four-node collaborative localization platform was developed, and experiments were carried out. The results confirmed the feasibility of multi-node collaborative localization, underscoring the advantages of the proposed algorithm, such as high accuracy, fast convergence, and robust stability.
ISSN:1424-8220