hybrid model to improve reference evapotranspiration prediction: Integrating ANN and PSO

Reference evapotranspiration (ETo), one of the key elements of the hydrological cycle, is crucial for managing irrigation and drainage systems. In order to estimate monthly ETo, this study tested the prediction abilities of a unique hybrid methodology that coupled data pre-processing with a hybrid m...

Full description

Saved in:
Bibliographic Details
Main Authors: Hadeel Essa, Salah L. Zubaidi
Format: Article
Language:English
Published: Wasit University 2023-12-01
Series:Wasit Journal of Engineering Sciences
Subjects:
Online Access:https://ejuow.uowasit.edu.iq/index.php/ejuow/article/view/450
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reference evapotranspiration (ETo), one of the key elements of the hydrological cycle, is crucial for managing irrigation and drainage systems. In order to estimate monthly ETo, this study tested the prediction abilities of a unique hybrid methodology that coupled data pre-processing with a hybrid model composed of an artificial neural network (ANN) and particle swarm optimisation (PSO). In order to train and evaluate the model, monthly meteorological data were collected in Al-Kut City, Iraq, from 1990 to 2020. A range of statistical indicators were used to assess the model, including RMSE, NSE, and R2. The outcomes showed that the model, with a coefficient of determination of 0.93, is effective and has good simulation levels.    
ISSN:2305-6932
2663-1970