Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications

Abstract Biosensors show great potential across various fields including, but not limited to, medical diagnostics, drug development, and environmental monitoring. Yet, commercialization faces challenges, particularly in fabrication and biofunctionalization, due to specific surface properties needed...

Full description

Saved in:
Bibliographic Details
Main Authors: Lieze Dankers, Bernard Nisol, Derick Yongabi, Tom Van der Donck, Jesús Gándara Loe, Patrick Wagner, Jin Won Seo, Rob Ameloot, Karen Leirs, Jeroen Lammertyn
Format: Article
Language:English
Published: Wiley-VCH 2025-07-01
Series:Advanced Materials Interfaces
Subjects:
Online Access:https://doi.org/10.1002/admi.202500266
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849728421729402880
author Lieze Dankers
Bernard Nisol
Derick Yongabi
Tom Van der Donck
Jesús Gándara Loe
Patrick Wagner
Jin Won Seo
Rob Ameloot
Karen Leirs
Jeroen Lammertyn
author_facet Lieze Dankers
Bernard Nisol
Derick Yongabi
Tom Van der Donck
Jesús Gándara Loe
Patrick Wagner
Jin Won Seo
Rob Ameloot
Karen Leirs
Jeroen Lammertyn
author_sort Lieze Dankers
collection DOAJ
description Abstract Biosensors show great potential across various fields including, but not limited to, medical diagnostics, drug development, and environmental monitoring. Yet, commercialization faces challenges, particularly in fabrication and biofunctionalization, due to specific surface properties needed for each application. This highlights the need for a standardized biomolecule immobilization process, enabling straightforward target detection on various surfaces. Cold atmospheric plasma technology offers a scalable solution, combining surface activation with molecule grafting in a single step. This technology is employed to construct stable surface‐independent carboxylic acid (COOH) linker‐layer coatings, enabling covalent protein immobilization via 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC) chemistry and creating a robust biointerface for bioassay integration. The coating's composition, surface energy, thickness, topography, and stability confirm a secure COOH‐rich layer. Biofunctionalization is studied in depth by immobilizing immunoglobulin G (IgG), streptavidin, and protein G. Enzyme‐linked immunosorbent assay (ELISA)‐based model bioassays demonstrate protein‐independent functionalization and linker‐layer stability of at least one month (stored in air). The calibration curve for IgG‐biotin detection shows a high signal‐to‐noise ratio. Consistent performance across polymethylmethacrylate (PMMA), cyclic olefin copolymer (COC), polyvinyl chloride (PVC), and glass proves the method’s universal applicability. Hence, this technology enables versatile, scalable, cost‐effective biosensor fabrication with high‐performance bioreceptor layers on various surfaces.
format Article
id doaj-art-c7187f8a76d3483eab75d050dd8be471
institution DOAJ
issn 2196-7350
language English
publishDate 2025-07-01
publisher Wiley-VCH
record_format Article
series Advanced Materials Interfaces
spelling doaj-art-c7187f8a76d3483eab75d050dd8be4712025-08-20T03:09:34ZengWiley-VCHAdvanced Materials Interfaces2196-73502025-07-011214n/an/a10.1002/admi.202500266Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing ApplicationsLieze Dankers0Bernard Nisol1Derick Yongabi2Tom Van der Donck3Jesús Gándara Loe4Patrick Wagner5Jin Won Seo6Rob Ameloot7Karen Leirs8Jeroen Lammertyn9KU Leuven Department of Biosystems MeBioS Biosensors Group Willem de Croylaan 42 Leuven 3001 BelgiumMolecular Plasma Group Diestsesteenweg 692 Leuven 3010 BelgiumKU Leuven Department of Physics and Astronomy Laboratory for Soft Matter and Biophysics Celestijnenlaan 200D Leuven 3001 BelgiumKU Leuven Department of Materials Engineering Kasteelpark Arenberg 44 Leuven 3001 BelgiumKU Leuven Department of Microbial and Molecular Systems Centre for Surface Chemistry and Catalysis Celestijnenlaan 200F Leuven 3001 BelgiumKU Leuven Department of Physics and Astronomy Laboratory for Soft Matter and Biophysics Celestijnenlaan 200D Leuven 3001 BelgiumKU Leuven Department of Materials Engineering Kasteelpark Arenberg 44 Leuven 3001 BelgiumKU Leuven Department of Microbial and Molecular Systems Centre for Surface Chemistry and Catalysis Celestijnenlaan 200F Leuven 3001 BelgiumKU Leuven Department of Biosystems MeBioS Biosensors Group Willem de Croylaan 42 Leuven 3001 BelgiumKU Leuven Department of Biosystems MeBioS Biosensors Group Willem de Croylaan 42 Leuven 3001 BelgiumAbstract Biosensors show great potential across various fields including, but not limited to, medical diagnostics, drug development, and environmental monitoring. Yet, commercialization faces challenges, particularly in fabrication and biofunctionalization, due to specific surface properties needed for each application. This highlights the need for a standardized biomolecule immobilization process, enabling straightforward target detection on various surfaces. Cold atmospheric plasma technology offers a scalable solution, combining surface activation with molecule grafting in a single step. This technology is employed to construct stable surface‐independent carboxylic acid (COOH) linker‐layer coatings, enabling covalent protein immobilization via 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC) chemistry and creating a robust biointerface for bioassay integration. The coating's composition, surface energy, thickness, topography, and stability confirm a secure COOH‐rich layer. Biofunctionalization is studied in depth by immobilizing immunoglobulin G (IgG), streptavidin, and protein G. Enzyme‐linked immunosorbent assay (ELISA)‐based model bioassays demonstrate protein‐independent functionalization and linker‐layer stability of at least one month (stored in air). The calibration curve for IgG‐biotin detection shows a high signal‐to‐noise ratio. Consistent performance across polymethylmethacrylate (PMMA), cyclic olefin copolymer (COC), polyvinyl chloride (PVC), and glass proves the method’s universal applicability. Hence, this technology enables versatile, scalable, cost‐effective biosensor fabrication with high‐performance bioreceptor layers on various surfaces.https://doi.org/10.1002/admi.202500266biosensingcold atmospheric plasmaprotein immobilizationssurface‐independent
spellingShingle Lieze Dankers
Bernard Nisol
Derick Yongabi
Tom Van der Donck
Jesús Gándara Loe
Patrick Wagner
Jin Won Seo
Rob Ameloot
Karen Leirs
Jeroen Lammertyn
Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications
Advanced Materials Interfaces
biosensing
cold atmospheric plasma
protein immobilizations
surface‐independent
title Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications
title_full Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications
title_fullStr Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications
title_full_unstemmed Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications
title_short Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications
title_sort atmospheric cold plasma technology enabling scalable surface independent protein immobilization for biosensing applications
topic biosensing
cold atmospheric plasma
protein immobilizations
surface‐independent
url https://doi.org/10.1002/admi.202500266
work_keys_str_mv AT liezedankers atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications
AT bernardnisol atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications
AT derickyongabi atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications
AT tomvanderdonck atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications
AT jesusgandaraloe atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications
AT patrickwagner atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications
AT jinwonseo atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications
AT robameloot atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications
AT karenleirs atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications
AT jeroenlammertyn atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications