Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications
Abstract Biosensors show great potential across various fields including, but not limited to, medical diagnostics, drug development, and environmental monitoring. Yet, commercialization faces challenges, particularly in fabrication and biofunctionalization, due to specific surface properties needed...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley-VCH
2025-07-01
|
| Series: | Advanced Materials Interfaces |
| Subjects: | |
| Online Access: | https://doi.org/10.1002/admi.202500266 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849728421729402880 |
|---|---|
| author | Lieze Dankers Bernard Nisol Derick Yongabi Tom Van der Donck Jesús Gándara Loe Patrick Wagner Jin Won Seo Rob Ameloot Karen Leirs Jeroen Lammertyn |
| author_facet | Lieze Dankers Bernard Nisol Derick Yongabi Tom Van der Donck Jesús Gándara Loe Patrick Wagner Jin Won Seo Rob Ameloot Karen Leirs Jeroen Lammertyn |
| author_sort | Lieze Dankers |
| collection | DOAJ |
| description | Abstract Biosensors show great potential across various fields including, but not limited to, medical diagnostics, drug development, and environmental monitoring. Yet, commercialization faces challenges, particularly in fabrication and biofunctionalization, due to specific surface properties needed for each application. This highlights the need for a standardized biomolecule immobilization process, enabling straightforward target detection on various surfaces. Cold atmospheric plasma technology offers a scalable solution, combining surface activation with molecule grafting in a single step. This technology is employed to construct stable surface‐independent carboxylic acid (COOH) linker‐layer coatings, enabling covalent protein immobilization via 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC) chemistry and creating a robust biointerface for bioassay integration. The coating's composition, surface energy, thickness, topography, and stability confirm a secure COOH‐rich layer. Biofunctionalization is studied in depth by immobilizing immunoglobulin G (IgG), streptavidin, and protein G. Enzyme‐linked immunosorbent assay (ELISA)‐based model bioassays demonstrate protein‐independent functionalization and linker‐layer stability of at least one month (stored in air). The calibration curve for IgG‐biotin detection shows a high signal‐to‐noise ratio. Consistent performance across polymethylmethacrylate (PMMA), cyclic olefin copolymer (COC), polyvinyl chloride (PVC), and glass proves the method’s universal applicability. Hence, this technology enables versatile, scalable, cost‐effective biosensor fabrication with high‐performance bioreceptor layers on various surfaces. |
| format | Article |
| id | doaj-art-c7187f8a76d3483eab75d050dd8be471 |
| institution | DOAJ |
| issn | 2196-7350 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Wiley-VCH |
| record_format | Article |
| series | Advanced Materials Interfaces |
| spelling | doaj-art-c7187f8a76d3483eab75d050dd8be4712025-08-20T03:09:34ZengWiley-VCHAdvanced Materials Interfaces2196-73502025-07-011214n/an/a10.1002/admi.202500266Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing ApplicationsLieze Dankers0Bernard Nisol1Derick Yongabi2Tom Van der Donck3Jesús Gándara Loe4Patrick Wagner5Jin Won Seo6Rob Ameloot7Karen Leirs8Jeroen Lammertyn9KU Leuven Department of Biosystems MeBioS Biosensors Group Willem de Croylaan 42 Leuven 3001 BelgiumMolecular Plasma Group Diestsesteenweg 692 Leuven 3010 BelgiumKU Leuven Department of Physics and Astronomy Laboratory for Soft Matter and Biophysics Celestijnenlaan 200D Leuven 3001 BelgiumKU Leuven Department of Materials Engineering Kasteelpark Arenberg 44 Leuven 3001 BelgiumKU Leuven Department of Microbial and Molecular Systems Centre for Surface Chemistry and Catalysis Celestijnenlaan 200F Leuven 3001 BelgiumKU Leuven Department of Physics and Astronomy Laboratory for Soft Matter and Biophysics Celestijnenlaan 200D Leuven 3001 BelgiumKU Leuven Department of Materials Engineering Kasteelpark Arenberg 44 Leuven 3001 BelgiumKU Leuven Department of Microbial and Molecular Systems Centre for Surface Chemistry and Catalysis Celestijnenlaan 200F Leuven 3001 BelgiumKU Leuven Department of Biosystems MeBioS Biosensors Group Willem de Croylaan 42 Leuven 3001 BelgiumKU Leuven Department of Biosystems MeBioS Biosensors Group Willem de Croylaan 42 Leuven 3001 BelgiumAbstract Biosensors show great potential across various fields including, but not limited to, medical diagnostics, drug development, and environmental monitoring. Yet, commercialization faces challenges, particularly in fabrication and biofunctionalization, due to specific surface properties needed for each application. This highlights the need for a standardized biomolecule immobilization process, enabling straightforward target detection on various surfaces. Cold atmospheric plasma technology offers a scalable solution, combining surface activation with molecule grafting in a single step. This technology is employed to construct stable surface‐independent carboxylic acid (COOH) linker‐layer coatings, enabling covalent protein immobilization via 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC) chemistry and creating a robust biointerface for bioassay integration. The coating's composition, surface energy, thickness, topography, and stability confirm a secure COOH‐rich layer. Biofunctionalization is studied in depth by immobilizing immunoglobulin G (IgG), streptavidin, and protein G. Enzyme‐linked immunosorbent assay (ELISA)‐based model bioassays demonstrate protein‐independent functionalization and linker‐layer stability of at least one month (stored in air). The calibration curve for IgG‐biotin detection shows a high signal‐to‐noise ratio. Consistent performance across polymethylmethacrylate (PMMA), cyclic olefin copolymer (COC), polyvinyl chloride (PVC), and glass proves the method’s universal applicability. Hence, this technology enables versatile, scalable, cost‐effective biosensor fabrication with high‐performance bioreceptor layers on various surfaces.https://doi.org/10.1002/admi.202500266biosensingcold atmospheric plasmaprotein immobilizationssurface‐independent |
| spellingShingle | Lieze Dankers Bernard Nisol Derick Yongabi Tom Van der Donck Jesús Gándara Loe Patrick Wagner Jin Won Seo Rob Ameloot Karen Leirs Jeroen Lammertyn Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications Advanced Materials Interfaces biosensing cold atmospheric plasma protein immobilizations surface‐independent |
| title | Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications |
| title_full | Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications |
| title_fullStr | Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications |
| title_full_unstemmed | Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications |
| title_short | Atmospheric Cold Plasma Technology Enabling Scalable Surface‐Independent Protein Immobilization for Biosensing Applications |
| title_sort | atmospheric cold plasma technology enabling scalable surface independent protein immobilization for biosensing applications |
| topic | biosensing cold atmospheric plasma protein immobilizations surface‐independent |
| url | https://doi.org/10.1002/admi.202500266 |
| work_keys_str_mv | AT liezedankers atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications AT bernardnisol atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications AT derickyongabi atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications AT tomvanderdonck atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications AT jesusgandaraloe atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications AT patrickwagner atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications AT jinwonseo atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications AT robameloot atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications AT karenleirs atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications AT jeroenlammertyn atmosphericcoldplasmatechnologyenablingscalablesurfaceindependentproteinimmobilizationforbiosensingapplications |