The velocity diagram for traveling waves

In this Note, we consider traveling waves in a reaction-diffusion equation in dimension one. Motivated by the motion of dislocations in crystals, we introduce an additive parameter $\sigma $ in the reaction term, which may be interpreted as an exterior force applied on the crystal. Under certain nat...

Full description

Saved in:
Bibliographic Details
Main Authors: Al Haj, Mohammad, Monneau, Régis
Format: Article
Language:English
Published: Académie des sciences 2023-05-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.433/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206264750145536
author Al Haj, Mohammad
Monneau, Régis
author_facet Al Haj, Mohammad
Monneau, Régis
author_sort Al Haj, Mohammad
collection DOAJ
description In this Note, we consider traveling waves in a reaction-diffusion equation in dimension one. Motivated by the motion of dislocations in crystals, we introduce an additive parameter $\sigma $ in the reaction term, which may be interpreted as an exterior force applied on the crystal. Under certain natural assumptions and for every value of $\sigma \in [\sigma ^-,\sigma ^+]$, we show the existence of traveling waves $\phi $ of velocity $c$. The range $\sigma \in (\sigma ^-,\sigma ^+)$ corresponds to bistable cases with a unique velocity $c=c(\sigma )$. On the contrary, the case $\sigma =\sigma ^+$ is positively monostable with a branch of velocities $c\ge c^+$, while the case $\sigma =\sigma ^-$ is negatively monostable with a branch of velocities $c\le c^-$. This study gives rise to a natural connection between bistable cases and monostable cases in a single velocity diagram. We also give some qualitative properties of the velocity function $\sigma \mapsto c(\sigma )$.
format Article
id doaj-art-c6f3a28c30c04910b45537a6b56045dd
institution Kabale University
issn 1778-3569
language English
publishDate 2023-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-c6f3a28c30c04910b45537a6b56045dd2025-02-07T11:07:37ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-05-01361G477778210.5802/crmath.43310.5802/crmath.433The velocity diagram for traveling wavesAl Haj, Mohammad0Monneau, Régis1Lebanese University, Faculty of Science (section 5), Nabatiye 1700, LebanonCEREMADE, Université Paris-Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris Cedex 16, France; CERMICS, Ecole des Ponts ParisTech, Université Paris-Est, 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs-sur-Marne, 77455 Marne-la-Vallée Cedex 2, FranceIn this Note, we consider traveling waves in a reaction-diffusion equation in dimension one. Motivated by the motion of dislocations in crystals, we introduce an additive parameter $\sigma $ in the reaction term, which may be interpreted as an exterior force applied on the crystal. Under certain natural assumptions and for every value of $\sigma \in [\sigma ^-,\sigma ^+]$, we show the existence of traveling waves $\phi $ of velocity $c$. The range $\sigma \in (\sigma ^-,\sigma ^+)$ corresponds to bistable cases with a unique velocity $c=c(\sigma )$. On the contrary, the case $\sigma =\sigma ^+$ is positively monostable with a branch of velocities $c\ge c^+$, while the case $\sigma =\sigma ^-$ is negatively monostable with a branch of velocities $c\le c^-$. This study gives rise to a natural connection between bistable cases and monostable cases in a single velocity diagram. We also give some qualitative properties of the velocity function $\sigma \mapsto c(\sigma )$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.433/
spellingShingle Al Haj, Mohammad
Monneau, Régis
The velocity diagram for traveling waves
Comptes Rendus. Mathématique
title The velocity diagram for traveling waves
title_full The velocity diagram for traveling waves
title_fullStr The velocity diagram for traveling waves
title_full_unstemmed The velocity diagram for traveling waves
title_short The velocity diagram for traveling waves
title_sort velocity diagram for traveling waves
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.433/
work_keys_str_mv AT alhajmohammad thevelocitydiagramfortravelingwaves
AT monneauregis thevelocitydiagramfortravelingwaves
AT alhajmohammad velocitydiagramfortravelingwaves
AT monneauregis velocitydiagramfortravelingwaves