Terahertz field effect in a two-dimensional semiconductor

Abstract Layered two-dimensional (2D) materials offer many promising avenues for advancing modern electronics, thanks to their tunable optical, electronic, and magnetic properties. Applying a strong electric field perpendicular to the layers, typically at the MV/cm level, is a highly effective way t...

Full description

Saved in:
Bibliographic Details
Main Authors: Tomoki Hiraoka, Sandra Nestler, Wentao Zhang, Simon Rossel, Hassan A. Hafez, Savio Fabretti, Heike Schlörb, Andy Thomas, Dmitry Turchinovich
Format: Article
Language:English
Published: Nature Portfolio 2025-06-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-60588-6
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849434309706907648
author Tomoki Hiraoka
Sandra Nestler
Wentao Zhang
Simon Rossel
Hassan A. Hafez
Savio Fabretti
Heike Schlörb
Andy Thomas
Dmitry Turchinovich
author_facet Tomoki Hiraoka
Sandra Nestler
Wentao Zhang
Simon Rossel
Hassan A. Hafez
Savio Fabretti
Heike Schlörb
Andy Thomas
Dmitry Turchinovich
author_sort Tomoki Hiraoka
collection DOAJ
description Abstract Layered two-dimensional (2D) materials offer many promising avenues for advancing modern electronics, thanks to their tunable optical, electronic, and magnetic properties. Applying a strong electric field perpendicular to the layers, typically at the MV/cm level, is a highly effective way to control these properties. However, conventional methods to induce such fields employ electric circuit - based gating techniques, which are restricted to microwave response rates and face challenges in achieving device-compatible ultrafast, sub-picosecond control. Here, we demonstrate an ultrafast field effect in atomically thin MoS2 embedded within a hybrid 3D-2D terahertz nanoantenna. This nanoantenna transforms an incoming terahertz electric field into a vertical ultrafast gating field in MoS2, simultaneously enhancing it to the MV/cm level. The terahertz field effect is observed as a coherent terahertz-induced Stark shift of exciton resonances in MoS2. Our results offer a promising strategy to tune and operate ultrafast optoelectronic devices based on 2D materials.
format Article
id doaj-art-c6afda3201b4459ba4e4c6157159cf26
institution Kabale University
issn 2041-1723
language English
publishDate 2025-06-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-c6afda3201b4459ba4e4c6157159cf262025-08-20T03:26:43ZengNature PortfolioNature Communications2041-17232025-06-0116111110.1038/s41467-025-60588-6Terahertz field effect in a two-dimensional semiconductorTomoki Hiraoka0Sandra Nestler1Wentao Zhang2Simon Rossel3Hassan A. Hafez4Savio Fabretti5Heike Schlörb6Andy Thomas7Dmitry Turchinovich8Fakultät für Physik, Universität BielefeldLeibniz-Institut für Festkörper- und Werkstoffforschung, Helmholtzstraße 20Fakultät für Physik, Universität BielefeldFakultät für Physik, Universität BielefeldFakultät für Physik, Universität BielefeldFakultät für Physik, Universität BielefeldLeibniz-Institut für Festkörper- und Werkstoffforschung, Helmholtzstraße 20Leibniz-Institut für Festkörper- und Werkstoffforschung, Helmholtzstraße 20Fakultät für Physik, Universität BielefeldAbstract Layered two-dimensional (2D) materials offer many promising avenues for advancing modern electronics, thanks to their tunable optical, electronic, and magnetic properties. Applying a strong electric field perpendicular to the layers, typically at the MV/cm level, is a highly effective way to control these properties. However, conventional methods to induce such fields employ electric circuit - based gating techniques, which are restricted to microwave response rates and face challenges in achieving device-compatible ultrafast, sub-picosecond control. Here, we demonstrate an ultrafast field effect in atomically thin MoS2 embedded within a hybrid 3D-2D terahertz nanoantenna. This nanoantenna transforms an incoming terahertz electric field into a vertical ultrafast gating field in MoS2, simultaneously enhancing it to the MV/cm level. The terahertz field effect is observed as a coherent terahertz-induced Stark shift of exciton resonances in MoS2. Our results offer a promising strategy to tune and operate ultrafast optoelectronic devices based on 2D materials.https://doi.org/10.1038/s41467-025-60588-6
spellingShingle Tomoki Hiraoka
Sandra Nestler
Wentao Zhang
Simon Rossel
Hassan A. Hafez
Savio Fabretti
Heike Schlörb
Andy Thomas
Dmitry Turchinovich
Terahertz field effect in a two-dimensional semiconductor
Nature Communications
title Terahertz field effect in a two-dimensional semiconductor
title_full Terahertz field effect in a two-dimensional semiconductor
title_fullStr Terahertz field effect in a two-dimensional semiconductor
title_full_unstemmed Terahertz field effect in a two-dimensional semiconductor
title_short Terahertz field effect in a two-dimensional semiconductor
title_sort terahertz field effect in a two dimensional semiconductor
url https://doi.org/10.1038/s41467-025-60588-6
work_keys_str_mv AT tomokihiraoka terahertzfieldeffectinatwodimensionalsemiconductor
AT sandranestler terahertzfieldeffectinatwodimensionalsemiconductor
AT wentaozhang terahertzfieldeffectinatwodimensionalsemiconductor
AT simonrossel terahertzfieldeffectinatwodimensionalsemiconductor
AT hassanahafez terahertzfieldeffectinatwodimensionalsemiconductor
AT saviofabretti terahertzfieldeffectinatwodimensionalsemiconductor
AT heikeschlorb terahertzfieldeffectinatwodimensionalsemiconductor
AT andythomas terahertzfieldeffectinatwodimensionalsemiconductor
AT dmitryturchinovich terahertzfieldeffectinatwodimensionalsemiconductor