Terahertz field effect in a two-dimensional semiconductor
Abstract Layered two-dimensional (2D) materials offer many promising avenues for advancing modern electronics, thanks to their tunable optical, electronic, and magnetic properties. Applying a strong electric field perpendicular to the layers, typically at the MV/cm level, is a highly effective way t...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-06-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-60588-6 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849434309706907648 |
|---|---|
| author | Tomoki Hiraoka Sandra Nestler Wentao Zhang Simon Rossel Hassan A. Hafez Savio Fabretti Heike Schlörb Andy Thomas Dmitry Turchinovich |
| author_facet | Tomoki Hiraoka Sandra Nestler Wentao Zhang Simon Rossel Hassan A. Hafez Savio Fabretti Heike Schlörb Andy Thomas Dmitry Turchinovich |
| author_sort | Tomoki Hiraoka |
| collection | DOAJ |
| description | Abstract Layered two-dimensional (2D) materials offer many promising avenues for advancing modern electronics, thanks to their tunable optical, electronic, and magnetic properties. Applying a strong electric field perpendicular to the layers, typically at the MV/cm level, is a highly effective way to control these properties. However, conventional methods to induce such fields employ electric circuit - based gating techniques, which are restricted to microwave response rates and face challenges in achieving device-compatible ultrafast, sub-picosecond control. Here, we demonstrate an ultrafast field effect in atomically thin MoS2 embedded within a hybrid 3D-2D terahertz nanoantenna. This nanoantenna transforms an incoming terahertz electric field into a vertical ultrafast gating field in MoS2, simultaneously enhancing it to the MV/cm level. The terahertz field effect is observed as a coherent terahertz-induced Stark shift of exciton resonances in MoS2. Our results offer a promising strategy to tune and operate ultrafast optoelectronic devices based on 2D materials. |
| format | Article |
| id | doaj-art-c6afda3201b4459ba4e4c6157159cf26 |
| institution | Kabale University |
| issn | 2041-1723 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Nature Communications |
| spelling | doaj-art-c6afda3201b4459ba4e4c6157159cf262025-08-20T03:26:43ZengNature PortfolioNature Communications2041-17232025-06-0116111110.1038/s41467-025-60588-6Terahertz field effect in a two-dimensional semiconductorTomoki Hiraoka0Sandra Nestler1Wentao Zhang2Simon Rossel3Hassan A. Hafez4Savio Fabretti5Heike Schlörb6Andy Thomas7Dmitry Turchinovich8Fakultät für Physik, Universität BielefeldLeibniz-Institut für Festkörper- und Werkstoffforschung, Helmholtzstraße 20Fakultät für Physik, Universität BielefeldFakultät für Physik, Universität BielefeldFakultät für Physik, Universität BielefeldFakultät für Physik, Universität BielefeldLeibniz-Institut für Festkörper- und Werkstoffforschung, Helmholtzstraße 20Leibniz-Institut für Festkörper- und Werkstoffforschung, Helmholtzstraße 20Fakultät für Physik, Universität BielefeldAbstract Layered two-dimensional (2D) materials offer many promising avenues for advancing modern electronics, thanks to their tunable optical, electronic, and magnetic properties. Applying a strong electric field perpendicular to the layers, typically at the MV/cm level, is a highly effective way to control these properties. However, conventional methods to induce such fields employ electric circuit - based gating techniques, which are restricted to microwave response rates and face challenges in achieving device-compatible ultrafast, sub-picosecond control. Here, we demonstrate an ultrafast field effect in atomically thin MoS2 embedded within a hybrid 3D-2D terahertz nanoantenna. This nanoantenna transforms an incoming terahertz electric field into a vertical ultrafast gating field in MoS2, simultaneously enhancing it to the MV/cm level. The terahertz field effect is observed as a coherent terahertz-induced Stark shift of exciton resonances in MoS2. Our results offer a promising strategy to tune and operate ultrafast optoelectronic devices based on 2D materials.https://doi.org/10.1038/s41467-025-60588-6 |
| spellingShingle | Tomoki Hiraoka Sandra Nestler Wentao Zhang Simon Rossel Hassan A. Hafez Savio Fabretti Heike Schlörb Andy Thomas Dmitry Turchinovich Terahertz field effect in a two-dimensional semiconductor Nature Communications |
| title | Terahertz field effect in a two-dimensional semiconductor |
| title_full | Terahertz field effect in a two-dimensional semiconductor |
| title_fullStr | Terahertz field effect in a two-dimensional semiconductor |
| title_full_unstemmed | Terahertz field effect in a two-dimensional semiconductor |
| title_short | Terahertz field effect in a two-dimensional semiconductor |
| title_sort | terahertz field effect in a two dimensional semiconductor |
| url | https://doi.org/10.1038/s41467-025-60588-6 |
| work_keys_str_mv | AT tomokihiraoka terahertzfieldeffectinatwodimensionalsemiconductor AT sandranestler terahertzfieldeffectinatwodimensionalsemiconductor AT wentaozhang terahertzfieldeffectinatwodimensionalsemiconductor AT simonrossel terahertzfieldeffectinatwodimensionalsemiconductor AT hassanahafez terahertzfieldeffectinatwodimensionalsemiconductor AT saviofabretti terahertzfieldeffectinatwodimensionalsemiconductor AT heikeschlorb terahertzfieldeffectinatwodimensionalsemiconductor AT andythomas terahertzfieldeffectinatwodimensionalsemiconductor AT dmitryturchinovich terahertzfieldeffectinatwodimensionalsemiconductor |