Robust and fast whole brain mapping of the RF transmit field B1 at 7T.

In-vivo whole brain mapping of the radio frequency transmit field B(1) (+) is a key aspect of recent method developments in ultra high field MRI. We present an optimized method for fast and robust in-vivo whole-brain B(1) (+) mapping at 7T. The method is based on the acquisition of stimulated and sp...

Full description

Saved in:
Bibliographic Details
Main Authors: Antoine Lutti, Joerg Stadler, Oliver Josephs, Christian Windischberger, Oliver Speck, Johannes Bernarding, Chloe Hutton, Nikolaus Weiskopf
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0032379&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In-vivo whole brain mapping of the radio frequency transmit field B(1) (+) is a key aspect of recent method developments in ultra high field MRI. We present an optimized method for fast and robust in-vivo whole-brain B(1) (+) mapping at 7T. The method is based on the acquisition of stimulated and spin echo 3D EPI images and was originally developed at 3T. We further optimized the method for use at 7T. Our optimization significantly improved the robustness of the method against large B(1) (+) deviations and off-resonance effects present at 7T. The mean accuracy and precision of the optimized method across the brain was high with a bias less than 2.6 percent unit (p.u.) and random error less than 0.7 p.u. respectively.
ISSN:1932-6203