Link Bandwidth and Transmission Capability of Single-Mode Multi-Aperture Vertical-Cavity Surface-Emitting Lasers at 100 G/Lane and 200 G/Lane over Multimode Fibers
Single-mode (SM) vertical-cavity surface-emitting lasers (VCSELs) have often been demonstrated with an unusually long transmission reach at very high data rates while today’s multimode VCSEL transmission has been limited by the fiber modal bandwidth and bandwidth contributed by the VCSEL–chromatic d...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Photonics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-6732/12/2/147 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Single-mode (SM) vertical-cavity surface-emitting lasers (VCSELs) have often been demonstrated with an unusually long transmission reach at very high data rates while today’s multimode VCSEL transmission has been limited by the fiber modal bandwidth and bandwidth contributed by the VCSEL–chromatic dispersion interaction under typical encircled flux launch condition. By using the same launch condition for VCSEL and modal bandwidth measurements, we studied the link bandwidth capability of SM multi-aperture (MA) VCSEL transmission. Using a multimode fiber with modal bandwidth under actual launch conditions moderately lower than OM4 threshold, we observed that the link bandwidth, with contributions from both modal bandwidth and laser–chromatic dispersion interaction, is higher than the corresponding modal bandwidths, which is very counter-intuitive. A detailed analysis reveals that the enhanced link bandwidth is contributed by both narrow laser linewidth and favorable laser–chromatic dispersion interaction. Through the study, we demonstrate that OM4 can meet link bandwidth requirements for 200/100 G/lane transmission over 100/200 m using SM MA VCSELs. |
|---|---|
| ISSN: | 2304-6732 |