Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndrome

Abstract The canonical G406R mutation that increases Ca2+ influx through the CACNA1C-encoded CaV1.2 Ca2+ channel underlies the multisystem disorder Timothy syndrome (TS), characterized by life-threatening arrhythmias. Severe episodic hypoglycemia is among the poorly characterized non-cardiac TS path...

Full description

Saved in:
Bibliographic Details
Main Authors: Maiko Matsui, Lauren E. Lynch, Isabella Distefano, Allison Galante, Aravind R. Gade, Hong-Gang Wang, Nicolas Gómez-Banoy, Patrick Towers, Daniel S. Sinden, Eric Q. Wei, Adam S. Barnett, Kenneth Johnson, Renan Lima, Alfonso Rubio-Navarro, Ang K. Li, Steven O. Marx, Timothy E. McGraw, Paul S. Thornton, Katherine W. Timothy, James C. Lo, Geoffrey S. Pitt
Format: Article
Language:English
Published: Nature Portfolio 2024-10-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-52885-3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850181526191341568
author Maiko Matsui
Lauren E. Lynch
Isabella Distefano
Allison Galante
Aravind R. Gade
Hong-Gang Wang
Nicolas Gómez-Banoy
Patrick Towers
Daniel S. Sinden
Eric Q. Wei
Adam S. Barnett
Kenneth Johnson
Renan Lima
Alfonso Rubio-Navarro
Ang K. Li
Steven O. Marx
Timothy E. McGraw
Paul S. Thornton
Katherine W. Timothy
James C. Lo
Geoffrey S. Pitt
author_facet Maiko Matsui
Lauren E. Lynch
Isabella Distefano
Allison Galante
Aravind R. Gade
Hong-Gang Wang
Nicolas Gómez-Banoy
Patrick Towers
Daniel S. Sinden
Eric Q. Wei
Adam S. Barnett
Kenneth Johnson
Renan Lima
Alfonso Rubio-Navarro
Ang K. Li
Steven O. Marx
Timothy E. McGraw
Paul S. Thornton
Katherine W. Timothy
James C. Lo
Geoffrey S. Pitt
author_sort Maiko Matsui
collection DOAJ
description Abstract The canonical G406R mutation that increases Ca2+ influx through the CACNA1C-encoded CaV1.2 Ca2+ channel underlies the multisystem disorder Timothy syndrome (TS), characterized by life-threatening arrhythmias. Severe episodic hypoglycemia is among the poorly characterized non-cardiac TS pathologies. While hypothesized from increased Ca2+ influx in pancreatic beta cells and consequent hyperinsulinism, this hypoglycemia mechanism is undemonstrated because of limited clinical data and lack of animal models. We generated a CaV1.2 G406R knockin mouse model that recapitulates key TS features, including hypoglycemia. Unexpectedly, these mice do not show hyperactive beta cells or hyperinsulinism in the setting of normal intrinsic beta cell function, suggesting dysregulated glucose homeostasis. Patient data confirm the absence of hyperinsulinism. We discover multiple alternative contributors, including perturbed counterregulatory hormone responses with defects in glucagon secretion and abnormal hypothalamic control of glucose homeostasis. These data provide new insights into contributions of CaV1.2 channels and reveal integrated consequences of the mutant channels driving life-threatening events in TS.
format Article
id doaj-art-c69ae191aabc414ca794e63e3df33805
institution OA Journals
issn 2041-1723
language English
publishDate 2024-10-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-c69ae191aabc414ca794e63e3df338052025-08-20T02:17:53ZengNature PortfolioNature Communications2041-17232024-10-0115111410.1038/s41467-024-52885-3Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndromeMaiko Matsui0Lauren E. Lynch1Isabella Distefano2Allison Galante3Aravind R. Gade4Hong-Gang Wang5Nicolas Gómez-Banoy6Patrick Towers7Daniel S. Sinden8Eric Q. Wei9Adam S. Barnett10Kenneth Johnson11Renan Lima12Alfonso Rubio-Navarro13Ang K. Li14Steven O. Marx15Timothy E. McGraw16Paul S. Thornton17Katherine W. Timothy18James C. Lo19Geoffrey S. Pitt20Cardiovascular Research Institute, Weill Cornell MedicineCardiovascular Research Institute, Weill Cornell MedicineCardiovascular Research Institute, Weill Cornell MedicineCardiovascular Research Institute, Weill Cornell MedicineCardiovascular Research Institute, Weill Cornell MedicineCardiovascular Research Institute, Weill Cornell MedicineCardiovascular Research Institute, Weill Cornell MedicineCardiovascular Research Institute, Weill Cornell MedicineCardiovascular Research Institute, Weill Cornell MedicineDepartment of Medicine, MSRB II, 2 Genome Ct, Duke University Medical CenterDepartment of Medicine, MSRB II, 2 Genome Ct, Duke University Medical CenterCardiovascular Research Institute, Weill Cornell MedicineWeill Center for Metabolic Health, Weill Cornell MedicineCardiovascular Research Institute, Weill Cornell MedicineCardiovascular Research Institute, Weill Cornell MedicineDivision of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia UniversityDepartment of Biochemistry, Weill Cornell Medical CollegeDivision of Endocrinology and Diabetes, Cook Children’s Medical CenterChildren’s Hospital Boston, Harvard Medical SchoolCardiovascular Research Institute, Weill Cornell MedicineCardiovascular Research Institute, Weill Cornell MedicineAbstract The canonical G406R mutation that increases Ca2+ influx through the CACNA1C-encoded CaV1.2 Ca2+ channel underlies the multisystem disorder Timothy syndrome (TS), characterized by life-threatening arrhythmias. Severe episodic hypoglycemia is among the poorly characterized non-cardiac TS pathologies. While hypothesized from increased Ca2+ influx in pancreatic beta cells and consequent hyperinsulinism, this hypoglycemia mechanism is undemonstrated because of limited clinical data and lack of animal models. We generated a CaV1.2 G406R knockin mouse model that recapitulates key TS features, including hypoglycemia. Unexpectedly, these mice do not show hyperactive beta cells or hyperinsulinism in the setting of normal intrinsic beta cell function, suggesting dysregulated glucose homeostasis. Patient data confirm the absence of hyperinsulinism. We discover multiple alternative contributors, including perturbed counterregulatory hormone responses with defects in glucagon secretion and abnormal hypothalamic control of glucose homeostasis. These data provide new insights into contributions of CaV1.2 channels and reveal integrated consequences of the mutant channels driving life-threatening events in TS.https://doi.org/10.1038/s41467-024-52885-3
spellingShingle Maiko Matsui
Lauren E. Lynch
Isabella Distefano
Allison Galante
Aravind R. Gade
Hong-Gang Wang
Nicolas Gómez-Banoy
Patrick Towers
Daniel S. Sinden
Eric Q. Wei
Adam S. Barnett
Kenneth Johnson
Renan Lima
Alfonso Rubio-Navarro
Ang K. Li
Steven O. Marx
Timothy E. McGraw
Paul S. Thornton
Katherine W. Timothy
James C. Lo
Geoffrey S. Pitt
Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndrome
Nature Communications
title Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndrome
title_full Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndrome
title_fullStr Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndrome
title_full_unstemmed Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndrome
title_short Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndrome
title_sort multiple beta cell independent mechanisms drive hypoglycemia in timothy syndrome
url https://doi.org/10.1038/s41467-024-52885-3
work_keys_str_mv AT maikomatsui multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT laurenelynch multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT isabelladistefano multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT allisongalante multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT aravindrgade multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT honggangwang multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT nicolasgomezbanoy multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT patricktowers multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT danielssinden multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT ericqwei multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT adamsbarnett multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT kennethjohnson multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT renanlima multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT alfonsorubionavarro multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT angkli multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT stevenomarx multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT timothyemcgraw multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT paulsthornton multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT katherinewtimothy multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT jamesclo multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome
AT geoffreyspitt multiplebetacellindependentmechanismsdrivehypoglycemiaintimothysyndrome