Development of HuMiChip for functional profiling of human microbiomes.

Understanding the diversity, composition, structure, function, and dynamics of human microbiomes in individual human hosts is crucial to reveal human-microbial interactions, especially for patients with microbially mediated disorders, but challenging due to the high diversity of the human microbiome...

Full description

Saved in:
Bibliographic Details
Main Authors: Qichao Tu, Zhili He, Yan Li, Yanfei Chen, Ye Deng, Lu Lin, Christopher L Hemme, Tong Yuan, Joy D Van Nostrand, Liyou Wu, Xuedong Zhou, Wenyuan Shi, Lanjuan Li, Jian Xu, Jizhong Zhou
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0090546&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding the diversity, composition, structure, function, and dynamics of human microbiomes in individual human hosts is crucial to reveal human-microbial interactions, especially for patients with microbially mediated disorders, but challenging due to the high diversity of the human microbiome. Here we have developed a functional gene-based microarray for profiling human microbiomes (HuMiChip) with 36,802 probes targeting 50,007 protein coding sequences for 139 key functional gene families. Computational evaluation suggested all probes included are highly specific to their target sequences. HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome. Obvious shifts of microbial functional structure and composition were observed for both patients with dental caries and periodontitis from moderate to advanced stages, suggesting a progressive change of microbial communities in response to the diseases. Consistent gene family profiles were observed by both HuMiChip and next generation sequencing technologies. Additionally, HuMiChip was able to detect gene families at as low as 0.001% relative abundance. The results indicate that the developed HuMiChip is a useful and effective tool for functional profiling of human microbiomes.
ISSN:1932-6203