Low-Light Image Enhancement Using Deep Learning: A Lightweight Network with Synthetic and Benchmark Dataset Evaluation

Low-light conditions often lead to severe degradation in image quality, impairing critical computer vision tasks in applications such as surveillance and mobile imaging. In this paper, we propose a lightweight deep learning framework for low-light image enhancement, designed to balance visual qualit...

Full description

Saved in:
Bibliographic Details
Main Author: Manuel J. C. S. Reis
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/11/6330
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Low-light conditions often lead to severe degradation in image quality, impairing critical computer vision tasks in applications such as surveillance and mobile imaging. In this paper, we propose a lightweight deep learning framework for low-light image enhancement, designed to balance visual quality with computational efficiency, with potential for deployment in latency-sensitive and resource-constrained environments. The architecture builds upon a UNet-inspired encoder–decoder structure, enhanced with attention modules and trained using a combination of perceptual and structural loss functions. Our training strategy utilizes a hybrid dataset composed of both real low-light images and synthetically generated image pairs created through controlled exposure adjustment and noise modeling. Experimental results on benchmark datasets such as LOL and SID demonstrate that our model achieves a Peak Signal-to-Noise Ratio (PSNR) of up to 28.4 dB and a Structural Similarity Index (SSIM) of 0.88 while maintaining a small parameter footprint (~1.3 M) and low inference latency (~6 FPS on Jetson Nano). The proposed approach offers a promising solution for industrial applications such as real-time surveillance, mobile photography, and embedded vision systems.
ISSN:2076-3417