The most uniform distribution of points on the sphere.

How to distribute a set of points uniformly on a spherical surface is a longstanding problem that still lacks a definite answer. In this work, we introduce a physical measure of uniformity based on the distribution of distances between points, as an alternative to commonly adopted measures based on...

Full description

Saved in:
Bibliographic Details
Main Authors: Luca Maria Del Bono, Flavio Nicoletti, Federico Ricci-Tersenghi
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0313863
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:How to distribute a set of points uniformly on a spherical surface is a longstanding problem that still lacks a definite answer. In this work, we introduce a physical measure of uniformity based on the distribution of distances between points, as an alternative to commonly adopted measures based on interaction potentials. We then use this new measure of uniformity to characterize several algorithms available in the literature. We also study the effect of optimizing the position of the points through the minimization of different interaction potentials via a gradient descent procedure. In this way, we can classify different algorithms and interaction potentials to find the one that generates the most uniform distribution of points on the sphere.
ISSN:1932-6203