Application of Self-Organizing Maps to Explore the Interactions of Microorganisms with Soil Properties in Fruit Crops Under Different Management and Pedo-Climatic Conditions

Background: Self-organizing maps (SOMs) are a class of neural network algorithms able to visually describe a high-dimensional dataset onto a two-dimensional grid. SOMs were explored to classify soils based on an array of physical, chemical, and biological parameters. Methods: The SOM analysis was pe...

Full description

Saved in:
Bibliographic Details
Main Authors: Francesca Antonucci, Simona Violino, Loredana Canfora, Małgorzata Tartanus, Ewa M. Furmanczyk, Sara Turci, Maria G. Tommasini, Nika Cvelbar Weber, Jaka Razinger, Morgane Ourry, Samuel Bickel, Thomas A. J. Passey, Anne Bohr, Heinrich Maisel, Massimo Pugliese, Francesco Vitali, Stefano Mocali, Federico Pallottino, Simone Figorilli, Anne D. Jungblut, Hester J. van Schalkwyk, Corrado Costa, Eligio Malusà
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Soil Systems
Subjects:
Online Access:https://www.mdpi.com/2571-8789/9/1/10
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849236112800743424
author Francesca Antonucci
Simona Violino
Loredana Canfora
Małgorzata Tartanus
Ewa M. Furmanczyk
Sara Turci
Maria G. Tommasini
Nika Cvelbar Weber
Jaka Razinger
Morgane Ourry
Samuel Bickel
Thomas A. J. Passey
Anne Bohr
Heinrich Maisel
Massimo Pugliese
Francesco Vitali
Stefano Mocali
Federico Pallottino
Simone Figorilli
Anne D. Jungblut
Hester J. van Schalkwyk
Corrado Costa
Eligio Malusà
author_facet Francesca Antonucci
Simona Violino
Loredana Canfora
Małgorzata Tartanus
Ewa M. Furmanczyk
Sara Turci
Maria G. Tommasini
Nika Cvelbar Weber
Jaka Razinger
Morgane Ourry
Samuel Bickel
Thomas A. J. Passey
Anne Bohr
Heinrich Maisel
Massimo Pugliese
Francesco Vitali
Stefano Mocali
Federico Pallottino
Simone Figorilli
Anne D. Jungblut
Hester J. van Schalkwyk
Corrado Costa
Eligio Malusà
author_sort Francesca Antonucci
collection DOAJ
description Background: Self-organizing maps (SOMs) are a class of neural network algorithms able to visually describe a high-dimensional dataset onto a two-dimensional grid. SOMs were explored to classify soils based on an array of physical, chemical, and biological parameters. Methods: The SOM analysis was performed considering soil physical, chemical, and microbial data gathered from an array of apple orchards and strawberry plantations managed by organic or conventional methods and located in different European climatic zones. Results: The SOM analysis considering the “climatic zone” categorical variables was able to discriminate the samples from the three zones for both crops. The zones were associated with different soil textures and chemical characteristics, and for both crops, the Continental zone was associated with microbial parameters—including biodiversity indices derived from the NGS data analysis. However, the SOM analysis based on the “management method” categorical variables was not able to discriminate the soils between organic and integrated management. Conclusions: This study allowed for the discrimination of soils of medium- and long-term fruit crops based on their pedo-climatic characteristics and associating these characteristics to some indicators of the soil biome, pointing to the possibility of better understanding the interactions among diverse variables, which could support unraveling the intricate web of relationships that define soil quality.
format Article
id doaj-art-c65cecdea73348a59cc8e7ccebdc48c3
institution Kabale University
issn 2571-8789
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Soil Systems
spelling doaj-art-c65cecdea73348a59cc8e7ccebdc48c32025-08-20T04:02:28ZengMDPI AGSoil Systems2571-87892025-01-01911010.3390/soilsystems9010010Application of Self-Organizing Maps to Explore the Interactions of Microorganisms with Soil Properties in Fruit Crops Under Different Management and Pedo-Climatic ConditionsFrancesca Antonucci0Simona Violino1Loredana Canfora2Małgorzata Tartanus3Ewa M. Furmanczyk4Sara Turci5Maria G. Tommasini6Nika Cvelbar Weber7Jaka Razinger8Morgane Ourry9Samuel Bickel10Thomas A. J. Passey11Anne Bohr12Heinrich Maisel13Massimo Pugliese14Francesco Vitali15Stefano Mocali16Federico Pallottino17Simone Figorilli18Anne D. Jungblut19Hester J. van Schalkwyk20Corrado Costa21Eligio Malusà22Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via Della Pascolare 16, 00015 Monterotondo, ItalyCentro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via Della Pascolare 16, 00015 Monterotondo, ItalyCentro di Ricerca Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via della Navicella 4, 00184 Rome, ItalyThe National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, PolandThe National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, PolandRI.NOVA Research and Innovation Soc. Coop., Via Dell’Arrigoni 120, 47522 Cesena, ItalyRI.NOVA Research and Innovation Soc. Coop., Via Dell’Arrigoni 120, 47522 Cesena, ItalyAgricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, SloveniaAgricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, SloveniaDepartment of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, DenmarkInstitute of Environmental Biotechnology, Technische Universitaet Graz, Rechbauerstrasse 12, 8010 Graz, AustriaNational Institute of Agricultural Botany (NIAB), New Road, East Malling, Kent ME19 6BJ, UKCompetence Center for Fruit Crops at the Lake of Constance, Schuhmacherhof 6, 88213 Ravensburg, GermanyFordergemeinschaft Okologischer Obstbau EV, Traubenplatz 5, 74189 Weinsberg, GermanyAgroinnova, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, ItalyCentro di Ricerca Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via di Lanciola 12/A, 50125 Firenze, ItalyCentro di Ricerca Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via di Lanciola 12/A, 50125 Firenze, ItalyCentro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via Della Pascolare 16, 00015 Monterotondo, ItalyCentro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via Della Pascolare 16, 00015 Monterotondo, ItalyNatural History Museum, Department of Sciences, Cromwell Road, London SW7 5BD, UKNatural History Museum, Department of Sciences, Cromwell Road, London SW7 5BD, UKCentro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via Della Pascolare 16, 00015 Monterotondo, ItalyThe National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, PolandBackground: Self-organizing maps (SOMs) are a class of neural network algorithms able to visually describe a high-dimensional dataset onto a two-dimensional grid. SOMs were explored to classify soils based on an array of physical, chemical, and biological parameters. Methods: The SOM analysis was performed considering soil physical, chemical, and microbial data gathered from an array of apple orchards and strawberry plantations managed by organic or conventional methods and located in different European climatic zones. Results: The SOM analysis considering the “climatic zone” categorical variables was able to discriminate the samples from the three zones for both crops. The zones were associated with different soil textures and chemical characteristics, and for both crops, the Continental zone was associated with microbial parameters—including biodiversity indices derived from the NGS data analysis. However, the SOM analysis based on the “management method” categorical variables was not able to discriminate the soils between organic and integrated management. Conclusions: This study allowed for the discrimination of soils of medium- and long-term fruit crops based on their pedo-climatic characteristics and associating these characteristics to some indicators of the soil biome, pointing to the possibility of better understanding the interactions among diverse variables, which could support unraveling the intricate web of relationships that define soil quality.https://www.mdpi.com/2571-8789/9/1/10appleneural networkssoil microbiome diversitystrawberry
spellingShingle Francesca Antonucci
Simona Violino
Loredana Canfora
Małgorzata Tartanus
Ewa M. Furmanczyk
Sara Turci
Maria G. Tommasini
Nika Cvelbar Weber
Jaka Razinger
Morgane Ourry
Samuel Bickel
Thomas A. J. Passey
Anne Bohr
Heinrich Maisel
Massimo Pugliese
Francesco Vitali
Stefano Mocali
Federico Pallottino
Simone Figorilli
Anne D. Jungblut
Hester J. van Schalkwyk
Corrado Costa
Eligio Malusà
Application of Self-Organizing Maps to Explore the Interactions of Microorganisms with Soil Properties in Fruit Crops Under Different Management and Pedo-Climatic Conditions
Soil Systems
apple
neural networks
soil microbiome diversity
strawberry
title Application of Self-Organizing Maps to Explore the Interactions of Microorganisms with Soil Properties in Fruit Crops Under Different Management and Pedo-Climatic Conditions
title_full Application of Self-Organizing Maps to Explore the Interactions of Microorganisms with Soil Properties in Fruit Crops Under Different Management and Pedo-Climatic Conditions
title_fullStr Application of Self-Organizing Maps to Explore the Interactions of Microorganisms with Soil Properties in Fruit Crops Under Different Management and Pedo-Climatic Conditions
title_full_unstemmed Application of Self-Organizing Maps to Explore the Interactions of Microorganisms with Soil Properties in Fruit Crops Under Different Management and Pedo-Climatic Conditions
title_short Application of Self-Organizing Maps to Explore the Interactions of Microorganisms with Soil Properties in Fruit Crops Under Different Management and Pedo-Climatic Conditions
title_sort application of self organizing maps to explore the interactions of microorganisms with soil properties in fruit crops under different management and pedo climatic conditions
topic apple
neural networks
soil microbiome diversity
strawberry
url https://www.mdpi.com/2571-8789/9/1/10
work_keys_str_mv AT francescaantonucci applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT simonaviolino applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT loredanacanfora applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT małgorzatatartanus applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT ewamfurmanczyk applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT saraturci applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT mariagtommasini applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT nikacvelbarweber applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT jakarazinger applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT morganeourry applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT samuelbickel applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT thomasajpassey applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT annebohr applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT heinrichmaisel applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT massimopugliese applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT francescovitali applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT stefanomocali applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT federicopallottino applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT simonefigorilli applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT annedjungblut applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT hesterjvanschalkwyk applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT corradocosta applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions
AT eligiomalusa applicationofselforganizingmapstoexploretheinteractionsofmicroorganismswithsoilpropertiesinfruitcropsunderdifferentmanagementandpedoclimaticconditions