Optimizing State of Charge Estimation in Lithium–Ion Batteries via Wavelet Denoising and Regression-Based Machine Learning Approaches

Accurate state of charge (SOC) estimation is key for the efficient management of lithium–ion (Li-ion) batteries, yet is often compromised by noise levels in measurement data. This study introduces a new approach that uses wavelet denoising with a machine learning regression model to enhance SOC pred...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammed Isam Al-Hiyali, Ramani Kannan, Hussein Shutari
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:World Electric Vehicle Journal
Subjects:
Online Access:https://www.mdpi.com/2032-6653/16/6/291
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate state of charge (SOC) estimation is key for the efficient management of lithium–ion (Li-ion) batteries, yet is often compromised by noise levels in measurement data. This study introduces a new approach that uses wavelet denoising with a machine learning regression model to enhance SOC prediction accuracy. The application of wavelet transform in data pre-processing is investigated to assess the impact of denoising on SOC estimation accuracy. The efficacy of the proposed technique has been evaluated using various polynomial and ensemble regression models. For empirical validation, this study employs four Li-ion battery datasets from NASA’s prognostics center, implementing a holdout method wherein one cell is reserved for testing to ensure robustness. The results, optimized through wavelet-denoised data using polynomial regression models, demonstrate improved SOC estimation with RMSE values of 0.09, 0.25, 0.28, and 0.19 for the respective battery datasets. In particular, significant improvements (<i>p</i>-value < 0.05) with variations of 0.18, 0.20, 0.16, and 0.14 were observed between the original and wavelet-denoised SOC estimates. This study proves the effectiveness of wavelet-denoised input in minimizing prediction errors and establishes a new standard for reliable SOC estimation methods.
ISSN:2032-6653