SOME FUNDAMENTAL PROPERTIES OF HEAPS
Heap is defined to be a non-empty set with ternary operation satisfying associativity, that is for every and satisfying Mal’cev identity, that is for all . There is a connection between heaps and groups. From a given heap, we can construct some groups and vice versa. The binary operation...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Universitas Pattimura
2023-12-01
|
| Series: | Barekeng |
| Subjects: | |
| Online Access: | https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/9048 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Heap is defined to be a non-empty set with ternary operation satisfying associativity, that is for every and satisfying Mal’cev identity, that is for all . There is a connection between heaps and groups. From a given heap, we can construct some groups and vice versa. The binary operation of groups can be built by choosing any fixed element of heap and is defined by =[x,e,y] for any . Otherwise, for given a binary operation of group , we can make a ternary operation defined by for every On heaps, there are some notions which are inspired by groups, such as sub-heaps, normal sub-heaps, quotient heaps, and heap morphisms. On this study, we will associate sub-heaps and corresponding subgroups and discuss some properties of heap morphisms. |
|---|---|
| ISSN: | 1978-7227 2615-3017 |