Burau representation of $B_4$ and quantization of the rational projective plane

The braid group $B_4$ naturally acts on the rational projective plane $\mathbb{P}^2(\mathbb{Q})$, this action corresponds to the classical integral reduced Burau representation of $B_4$. The first result of this paper is a classification of the orbits of this action. The Burau representation then de...

Full description

Saved in:
Bibliographic Details
Main Author: Jouteur, Perrine
Format: Article
Language:English
Published: Académie des sciences 2025-03-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.702/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849247516468445184
author Jouteur, Perrine
author_facet Jouteur, Perrine
author_sort Jouteur, Perrine
collection DOAJ
description The braid group $B_4$ naturally acts on the rational projective plane $\mathbb{P}^2(\mathbb{Q})$, this action corresponds to the classical integral reduced Burau representation of $B_4$. The first result of this paper is a classification of the orbits of this action. The Burau representation then defines an action of $B_4$ on $\mathbb{P}^2\bigl (\mathbb{Z}(q)\bigr )$, where $q$ is a formal parameter and $\mathbb{Z}(q)$ is the field of rational functions in $q$ with integer coefficients. We study orbits of the $B_4$-action on $\mathbb{P}^2\bigl (\mathbb{Z}(q)\bigr )$, and show existence of embeddings of the $q$-deformed projective line $\mathbb{P}^1\bigl (\mathbb{Z}(q)\bigr )$ that precisely correspond to the notion of $q$-rationals due to Morier-Genoud and Ovsienko.
format Article
id doaj-art-c6112e1923ba4292aadf45ba1944444e
institution Kabale University
issn 1778-3569
language English
publishDate 2025-03-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-c6112e1923ba4292aadf45ba1944444e2025-08-20T03:58:11ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692025-03-01363G18910710.5802/crmath.70210.5802/crmath.702Burau representation of $B_4$ and quantization of the rational projective planeJouteur, Perrine0Laboratoire de Mathématiques de Reims, UMR 9008 CNRS et Université de Reims Champagne-Ardenne, U.F.R. Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, FranceThe braid group $B_4$ naturally acts on the rational projective plane $\mathbb{P}^2(\mathbb{Q})$, this action corresponds to the classical integral reduced Burau representation of $B_4$. The first result of this paper is a classification of the orbits of this action. The Burau representation then defines an action of $B_4$ on $\mathbb{P}^2\bigl (\mathbb{Z}(q)\bigr )$, where $q$ is a formal parameter and $\mathbb{Z}(q)$ is the field of rational functions in $q$ with integer coefficients. We study orbits of the $B_4$-action on $\mathbb{P}^2\bigl (\mathbb{Z}(q)\bigr )$, and show existence of embeddings of the $q$-deformed projective line $\mathbb{P}^1\bigl (\mathbb{Z}(q)\bigr )$ that precisely correspond to the notion of $q$-rationals due to Morier-Genoud and Ovsienko.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.702/QuantizationBurau representation$q$-rational numbersbraid grouprational projective plane
spellingShingle Jouteur, Perrine
Burau representation of $B_4$ and quantization of the rational projective plane
Comptes Rendus. Mathématique
Quantization
Burau representation
$q$-rational numbers
braid group
rational projective plane
title Burau representation of $B_4$ and quantization of the rational projective plane
title_full Burau representation of $B_4$ and quantization of the rational projective plane
title_fullStr Burau representation of $B_4$ and quantization of the rational projective plane
title_full_unstemmed Burau representation of $B_4$ and quantization of the rational projective plane
title_short Burau representation of $B_4$ and quantization of the rational projective plane
title_sort burau representation of b 4 and quantization of the rational projective plane
topic Quantization
Burau representation
$q$-rational numbers
braid group
rational projective plane
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.702/
work_keys_str_mv AT jouteurperrine buraurepresentationofb4andquantizationoftherationalprojectiveplane