Novel hybrid integrated Pix2Pix and WGAN model with Gradient Penalty for binary images denoising
This paper introduces a novel approach to image denoising that leverages the advantages of Generative Adversarial Networks (GANs). Specifically, we propose a model that combines elements of the Pix2Pix model and the Wasserstein GAN (WGAN) with Gradient Penalty (WGAN-GP). This hybrid framework seeks...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-12-01
|
| Series: | Systems and Soft Computing |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2772941924000516 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850249409536720896 |
|---|---|
| author | Luca Tirel Ali Mohamed Ali Hashim A. Hashim |
| author_facet | Luca Tirel Ali Mohamed Ali Hashim A. Hashim |
| author_sort | Luca Tirel |
| collection | DOAJ |
| description | This paper introduces a novel approach to image denoising that leverages the advantages of Generative Adversarial Networks (GANs). Specifically, we propose a model that combines elements of the Pix2Pix model and the Wasserstein GAN (WGAN) with Gradient Penalty (WGAN-GP). This hybrid framework seeks to capitalize on the denoising capabilities of conditional GANs, as demonstrated in the Pix2Pix model, while mitigating the need for an exhaustive search for optimal hyperparameters that could potentially ruin the stability of the learning process. In the proposed method, the GAN’s generator is employed to produce denoised images, harnessing the power of a conditional GAN for noise reduction. Simultaneously, the implementation of the Lipschitz continuity constraint during updates, as featured in WGAN-GP, aids in reducing susceptibility to mode collapse. This innovative design allows the proposed model to benefit from the strong points of both Pix2Pix and WGAN-GP, generating superior denoising results while ensuring training stability. Drawing on previous work on image-to-image translation and GAN stabilization techniques, the proposed research highlights the potential of GANs as a general-purpose solution for denoising. The paper details the development and testing of this model, showcasing its effectiveness through numerical experiments. The dataset was created by adding synthetic noise to clean images. Numerical results based on real-world dataset validation underscore the efficacy of this approach in image-denoising tasks, exhibiting significant enhancements over traditional techniques. Notably, the proposed model demonstrates strong generalization capabilities, performing effectively even when trained with synthetic noise. |
| format | Article |
| id | doaj-art-c5cbe80a2d95426baafc506174ef936a |
| institution | OA Journals |
| issn | 2772-9419 |
| language | English |
| publishDate | 2024-12-01 |
| publisher | Elsevier |
| record_format | Article |
| series | Systems and Soft Computing |
| spelling | doaj-art-c5cbe80a2d95426baafc506174ef936a2025-08-20T01:58:30ZengElsevierSystems and Soft Computing2772-94192024-12-01620012210.1016/j.sasc.2024.200122Novel hybrid integrated Pix2Pix and WGAN model with Gradient Penalty for binary images denoisingLuca Tirel0Ali Mohamed Ali1Hashim A. Hashim2Department of Computer, Control, and Management, University of Rome, Via Ariosto, Rome, ItalyDepartment of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada, K1S-5B6Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada, K1S-5B6; Corresponding author.This paper introduces a novel approach to image denoising that leverages the advantages of Generative Adversarial Networks (GANs). Specifically, we propose a model that combines elements of the Pix2Pix model and the Wasserstein GAN (WGAN) with Gradient Penalty (WGAN-GP). This hybrid framework seeks to capitalize on the denoising capabilities of conditional GANs, as demonstrated in the Pix2Pix model, while mitigating the need for an exhaustive search for optimal hyperparameters that could potentially ruin the stability of the learning process. In the proposed method, the GAN’s generator is employed to produce denoised images, harnessing the power of a conditional GAN for noise reduction. Simultaneously, the implementation of the Lipschitz continuity constraint during updates, as featured in WGAN-GP, aids in reducing susceptibility to mode collapse. This innovative design allows the proposed model to benefit from the strong points of both Pix2Pix and WGAN-GP, generating superior denoising results while ensuring training stability. Drawing on previous work on image-to-image translation and GAN stabilization techniques, the proposed research highlights the potential of GANs as a general-purpose solution for denoising. The paper details the development and testing of this model, showcasing its effectiveness through numerical experiments. The dataset was created by adding synthetic noise to clean images. Numerical results based on real-world dataset validation underscore the efficacy of this approach in image-denoising tasks, exhibiting significant enhancements over traditional techniques. Notably, the proposed model demonstrates strong generalization capabilities, performing effectively even when trained with synthetic noise.http://www.sciencedirect.com/science/article/pii/S2772941924000516Image enhancementGenerative adversarial networkImage denoisingBinary images |
| spellingShingle | Luca Tirel Ali Mohamed Ali Hashim A. Hashim Novel hybrid integrated Pix2Pix and WGAN model with Gradient Penalty for binary images denoising Systems and Soft Computing Image enhancement Generative adversarial network Image denoising Binary images |
| title | Novel hybrid integrated Pix2Pix and WGAN model with Gradient Penalty for binary images denoising |
| title_full | Novel hybrid integrated Pix2Pix and WGAN model with Gradient Penalty for binary images denoising |
| title_fullStr | Novel hybrid integrated Pix2Pix and WGAN model with Gradient Penalty for binary images denoising |
| title_full_unstemmed | Novel hybrid integrated Pix2Pix and WGAN model with Gradient Penalty for binary images denoising |
| title_short | Novel hybrid integrated Pix2Pix and WGAN model with Gradient Penalty for binary images denoising |
| title_sort | novel hybrid integrated pix2pix and wgan model with gradient penalty for binary images denoising |
| topic | Image enhancement Generative adversarial network Image denoising Binary images |
| url | http://www.sciencedirect.com/science/article/pii/S2772941924000516 |
| work_keys_str_mv | AT lucatirel novelhybridintegratedpix2pixandwganmodelwithgradientpenaltyforbinaryimagesdenoising AT alimohamedali novelhybridintegratedpix2pixandwganmodelwithgradientpenaltyforbinaryimagesdenoising AT hashimahashim novelhybridintegratedpix2pixandwganmodelwithgradientpenaltyforbinaryimagesdenoising |