Co-assembled Glycyrrhiza nanoparticles embedded supramolecular protein hydrogels to enhance licochalcone A release for acute inflammation management
Licochalcone A (LA) garnered remarkable acclaim in acute inflammation therapy, however, poor release capability from the matrix and oral bioavailability restrict its oral delivery. To address this challenge, licorice-derived glycyrrhizic acid (GA) and LA were co-assembled into GA-LA (GLA) binary co-...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | International Journal of Pharmaceutics: X |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2590156725000283 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850113587874365440 |
|---|---|
| author | Zhuxian Wang Jun Liu Yufan Wu Yamei Li Hongxia Zhu Qiang Liu Bin Yang |
| author_facet | Zhuxian Wang Jun Liu Yufan Wu Yamei Li Hongxia Zhu Qiang Liu Bin Yang |
| author_sort | Zhuxian Wang |
| collection | DOAJ |
| description | Licochalcone A (LA) garnered remarkable acclaim in acute inflammation therapy, however, poor release capability from the matrix and oral bioavailability restrict its oral delivery. To address this challenge, licorice-derived glycyrrhizic acid (GA) and LA were co-assembled into GA-LA (GLA) binary co-assembled Glycyrrhiza nanoparticles (BCGNs), which were subsequently incorporated into supramolecular hydrogel matrix. GLA BCGNs demonstrated a remarkable capacity to scavenge various reactive oxygen species (ROS) and facilitated the cascade process of O2•−-H2O2-O2 in vitro. Subsequently, GLA was dispersed in nano form into ovalbumin (OVA) and rhamnose (Rha) solutions, which were next self-assembled into OVA-Rha-GLA hydrogels. Remarkably, the introduction of Rha induced disordered secondary conformation of OVA, which decreased its mechanical properties and inherent binding energy, thereby shaping the three-dimensional supramolecular spatial structures of OVA-Rha-GLA networks. The assembly mechanisms indicated that the hydrogen bonding predominantly drove the assembly of loose supramolecular networks surrounded by -OH, -CH2 and CO bonds on the Rha and OVA. Notably, the conformational transformation facilitated faster LA release, confirmed by computational simulation analysis, which was conducive to acute inflammation curation. Therefore, OVA-Rha-GLA exhibited excellent anti-inflammation and ROS-scavenging versatilities, displaying improved oral bioavailability compared to hydrogels lacking BCGNs or Rha in cellular and animal acute inflammation experiments. The results provided novel BCGNs-embedded supramolecular hydrogel systems to improve the drug release and anti-inflammatory bioactivities of LA, which demonstrated great promise in the management of acute inflammation. |
| format | Article |
| id | doaj-art-c5a754871cd843889a4b67e2d1bad2f0 |
| institution | OA Journals |
| issn | 2590-1567 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | Elsevier |
| record_format | Article |
| series | International Journal of Pharmaceutics: X |
| spelling | doaj-art-c5a754871cd843889a4b67e2d1bad2f02025-08-20T02:37:06ZengElsevierInternational Journal of Pharmaceutics: X2590-15672025-06-01910034310.1016/j.ijpx.2025.100343Co-assembled Glycyrrhiza nanoparticles embedded supramolecular protein hydrogels to enhance licochalcone A release for acute inflammation managementZhuxian Wang0Jun Liu1Yufan Wu2Yamei Li3Hongxia Zhu4Qiang Liu5Bin Yang6Dermatology Hospital, Southern Medical University, Guangzhou, China; Corresponding authors at: Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.Dermatology Hospital, Southern Medical University, Guangzhou, ChinaSchool of Traditional Chinese Medicine, Southern Medical University, Guangzhou, ChinaSchool of Traditional Chinese Medicine, Southern Medical University, Guangzhou, ChinaSchool of Traditional Chinese Medicine, Southern Medical University, Guangzhou, ChinaDermatology Hospital, Southern Medical University, Guangzhou, China; Corresponding authors at: Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.Dermatology Hospital, Southern Medical University, Guangzhou, China; Corresponding authors at: Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.Licochalcone A (LA) garnered remarkable acclaim in acute inflammation therapy, however, poor release capability from the matrix and oral bioavailability restrict its oral delivery. To address this challenge, licorice-derived glycyrrhizic acid (GA) and LA were co-assembled into GA-LA (GLA) binary co-assembled Glycyrrhiza nanoparticles (BCGNs), which were subsequently incorporated into supramolecular hydrogel matrix. GLA BCGNs demonstrated a remarkable capacity to scavenge various reactive oxygen species (ROS) and facilitated the cascade process of O2•−-H2O2-O2 in vitro. Subsequently, GLA was dispersed in nano form into ovalbumin (OVA) and rhamnose (Rha) solutions, which were next self-assembled into OVA-Rha-GLA hydrogels. Remarkably, the introduction of Rha induced disordered secondary conformation of OVA, which decreased its mechanical properties and inherent binding energy, thereby shaping the three-dimensional supramolecular spatial structures of OVA-Rha-GLA networks. The assembly mechanisms indicated that the hydrogen bonding predominantly drove the assembly of loose supramolecular networks surrounded by -OH, -CH2 and CO bonds on the Rha and OVA. Notably, the conformational transformation facilitated faster LA release, confirmed by computational simulation analysis, which was conducive to acute inflammation curation. Therefore, OVA-Rha-GLA exhibited excellent anti-inflammation and ROS-scavenging versatilities, displaying improved oral bioavailability compared to hydrogels lacking BCGNs or Rha in cellular and animal acute inflammation experiments. The results provided novel BCGNs-embedded supramolecular hydrogel systems to improve the drug release and anti-inflammatory bioactivities of LA, which demonstrated great promise in the management of acute inflammation.http://www.sciencedirect.com/science/article/pii/S2590156725000283Supramolecular hydrogelsCo-assembled natural productsLicochalcone aAcute inflammationDrug releaseBioavailability |
| spellingShingle | Zhuxian Wang Jun Liu Yufan Wu Yamei Li Hongxia Zhu Qiang Liu Bin Yang Co-assembled Glycyrrhiza nanoparticles embedded supramolecular protein hydrogels to enhance licochalcone A release for acute inflammation management International Journal of Pharmaceutics: X Supramolecular hydrogels Co-assembled natural products Licochalcone a Acute inflammation Drug release Bioavailability |
| title | Co-assembled Glycyrrhiza nanoparticles embedded supramolecular protein hydrogels to enhance licochalcone A release for acute inflammation management |
| title_full | Co-assembled Glycyrrhiza nanoparticles embedded supramolecular protein hydrogels to enhance licochalcone A release for acute inflammation management |
| title_fullStr | Co-assembled Glycyrrhiza nanoparticles embedded supramolecular protein hydrogels to enhance licochalcone A release for acute inflammation management |
| title_full_unstemmed | Co-assembled Glycyrrhiza nanoparticles embedded supramolecular protein hydrogels to enhance licochalcone A release for acute inflammation management |
| title_short | Co-assembled Glycyrrhiza nanoparticles embedded supramolecular protein hydrogels to enhance licochalcone A release for acute inflammation management |
| title_sort | co assembled glycyrrhiza nanoparticles embedded supramolecular protein hydrogels to enhance licochalcone a release for acute inflammation management |
| topic | Supramolecular hydrogels Co-assembled natural products Licochalcone a Acute inflammation Drug release Bioavailability |
| url | http://www.sciencedirect.com/science/article/pii/S2590156725000283 |
| work_keys_str_mv | AT zhuxianwang coassembledglycyrrhizananoparticlesembeddedsupramolecularproteinhydrogelstoenhancelicochalconeareleaseforacuteinflammationmanagement AT junliu coassembledglycyrrhizananoparticlesembeddedsupramolecularproteinhydrogelstoenhancelicochalconeareleaseforacuteinflammationmanagement AT yufanwu coassembledglycyrrhizananoparticlesembeddedsupramolecularproteinhydrogelstoenhancelicochalconeareleaseforacuteinflammationmanagement AT yameili coassembledglycyrrhizananoparticlesembeddedsupramolecularproteinhydrogelstoenhancelicochalconeareleaseforacuteinflammationmanagement AT hongxiazhu coassembledglycyrrhizananoparticlesembeddedsupramolecularproteinhydrogelstoenhancelicochalconeareleaseforacuteinflammationmanagement AT qiangliu coassembledglycyrrhizananoparticlesembeddedsupramolecularproteinhydrogelstoenhancelicochalconeareleaseforacuteinflammationmanagement AT binyang coassembledglycyrrhizananoparticlesembeddedsupramolecularproteinhydrogelstoenhancelicochalconeareleaseforacuteinflammationmanagement |