Quantitative receptor-based imaging of tumor proliferation with the sigma-2 ligand [(18)F]ISO-1.

The sigma-2 receptor is expressed in higher density in proliferating (P) tumor cells versus quiescent (Q) tumor cells, thus providing an attractive target for imaging the proliferative status (i.e., P:Q ratio) of solid tumors. Here we evaluate the utility of the sigma-2 receptor ligand 2-(2-[(18)F]f...

Full description

Saved in:
Bibliographic Details
Main Authors: Kooresh I Shoghi, Jinbin Xu, Yi Su, June He, Douglas Rowland, Ying Yan, Joel R Garbow, Zhude Tu, Lynne A Jones, Ryuji Higashikubo, Kenneth T Wheeler, Ronald A Lubet, Robert H Mach, Ming You
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0074188
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sigma-2 receptor is expressed in higher density in proliferating (P) tumor cells versus quiescent (Q) tumor cells, thus providing an attractive target for imaging the proliferative status (i.e., P:Q ratio) of solid tumors. Here we evaluate the utility of the sigma-2 receptor ligand 2-(2-[(18)F]fluoroethoxy)-N-(4-(3,4-dihydro-6,7-dimethoxyisoquinolin-2(1H)-yl)butyl)-5-methyl-benzamide, [(18)F]ISO-1, in two different rodent models of breast cancer. In the first study, small animal Positron Emission Tomography (PET) imaging studies were conducted with [(18)F]ISO-1 and (18)FDG in xenografts of mouse mammary tumor 66 and tracer uptake was correlated with the in vivo P:Q ratio determined by flow cytometric measures of BrdU-labeled tumor cells. The second model utilized a chemically-induced (N-methyl-N-nitrosourea [MNU]) model of rat mammary carcinoma to correlate measures of [(18)F]ISO-1 and FDG uptake with MR-based volumetric measures of tumor growth. In addition, [(18)F]ISO-1 and FDG were used to assess the response of MNU-induced tumors to bexarotene and Vorozole therapy. In the mouse mammary 66 tumors, a strong linear correlation was observed between the [(18)F]ISO-1 tumor: background ratio and the proliferative status (P:Q ratio) of the tumor (R = 0.87). Similarly, measures of [(18)F]ISO-1 uptake in MNU-induced tumors significantly correlated (R = 0.68, P<0.003) with changes in tumor volume between consecutive MR imaging sessions. Our data suggest that PET studies of [(18)F]ISO-1 provide a measure of both the proliferative status and tumor growth rate, which would be valuable in designing an appropriate treatment strategy.
ISSN:1932-6203