Charging Incentive Design with Minimum Price Guarantee for Battery Energy Storage Systems to Mitigate Grid Congestion

The large-scale integration of renewable energy sources (RESs) has raised concerns regarding grid congestion in Japan. Battery energy storage systems (BESSs) can mitigate congestion by adjusting charging schedules; however, BESS owners basically prioritize market arbitrage, which may not be aligned...

Full description

Saved in:
Bibliographic Details
Main Authors: Yujiro Tanno, Akihisa Kaneko, Yu Fujimoto, Yasuhiro Hayashi, Yuji Hanai, Hideo Koseki
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/11/2840
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The large-scale integration of renewable energy sources (RESs) has raised concerns regarding grid congestion in Japan. Battery energy storage systems (BESSs) can mitigate congestion by adjusting charging schedules; however, BESS owners basically prioritize market arbitrage, which may not be aligned with congestion mitigation. This paper proposes a charging incentive design to guide arbitrage-oriented BESS charging toward time periods that are effective for grid congestion mitigation. The system operator predicts congested hours and ensures that BESS owners can purchase electricity at the lowest daily market price. This design intends to shift the BESS charging time towards congestion periods. Because market prices tend to decline during congestion periods, the proposed method reduces the operator’s financial burden while encouraging congestion-mitigating charging behavior. Numerical simulations using a simplified Japanese east-side power system model demonstrate that the proposed method reduced the congestion mitigation costs by 3.86% and curtailed the RES output by 3.89%, compared to using no incentive method (current operation in Japan). Furthermore, additional payments to BESS owners accounted for only around 7% of the resulting cost savings, indicating that the proposed method achieved lower overall system operating costs.
ISSN:1996-1073