Artificial Intelligence in Chest Radiography—A Comparative Review of Human and Veterinary Medicine

The integration of artificial intelligence (AI) into chest radiography (CXR) has greatly impacted both human and veterinary medicine, enhancing diagnostic speed, accuracy, and efficiency. In human medicine, AI has been extensively studied, improving the identification of thoracic abnormalities, diag...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrea Rubini, Roberto Di Via, Vito Paolo Pastore, Francesca Del Signore, Martina Rosto, Andrea De Bonis, Francesca Odone, Massimo Vignoli
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Veterinary Sciences
Subjects:
Online Access:https://www.mdpi.com/2306-7381/12/5/404
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The integration of artificial intelligence (AI) into chest radiography (CXR) has greatly impacted both human and veterinary medicine, enhancing diagnostic speed, accuracy, and efficiency. In human medicine, AI has been extensively studied, improving the identification of thoracic abnormalities, diagnostic precision in emergencies, and the classification of complex conditions such as tuberculosis, pneumonia, and COVID-19. Deep learning-based models assist radiologists by detecting patterns, generating probability maps, and predicting outcomes like heart failure. However, AI is still supplementary to clinical expertise due to challenges such as data limitations, algorithmic biases, and the need for extensive validation. Ethical concerns and regulatory constraints also hinder full implementation. In veterinary medicine, AI is still in its early stages and is rarely used; however, it has the potential to become a valuable tool for supporting radiologists in the future. However, challenges include smaller datasets, breed variability, and limited research. Addressing these through focused research on species with less phenotypic variability (like cats) and cross-sector collaborations could advance AI in veterinary medicine. Both fields demonstrate AI’s potential to enhance diagnostics but emphasize the ongoing need for human expertise in clinical decision making. Differences in anatomy structure between the two fields must be considered for effective AI adaptation.
ISSN:2306-7381