Woodchip-filled trenches: A solution to enhance urban water infiltration capacity?

Urban water management has been increasingly relying on infiltration to limit the environmental impact of stormwater, secondary treated effluent and gray water. The infiltration systems used are generally based on non-renewable drainage materials featuring a pronounced ecological footprint (i.e., ex...

Full description

Saved in:
Bibliographic Details
Main Authors: P. Louis, L. Delgado-Gonzalez, L. Lassabatère, S. Czarnes, J. Aubert, A. Imig, R. Clément
Format: Article
Language:English
Published: Elsevier 2024-11-01
Series:Geoderma
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0016706124002866
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850193145378111488
author P. Louis
L. Delgado-Gonzalez
L. Lassabatère
S. Czarnes
J. Aubert
A. Imig
R. Clément
author_facet P. Louis
L. Delgado-Gonzalez
L. Lassabatère
S. Czarnes
J. Aubert
A. Imig
R. Clément
author_sort P. Louis
collection DOAJ
description Urban water management has been increasingly relying on infiltration to limit the environmental impact of stormwater, secondary treated effluent and gray water. The infiltration systems used are generally based on non-renewable drainage materials featuring a pronounced ecological footprint (i.e., excavation and transport), such as gravel. This paper investigates the possibility of using woodchips instead of traditional drainage materials. Our study examines flow dynamics in woodchip-filled infiltration trenches at four decentralized gray water sites, on a silty clay soil. Infiltration tests were conducted using the Beerkan method to measure soil infiltration capacity both beneath the woodchip-filled trenches and in adjacent soil. Soil hydraulic functions were determined according to the BEST method, then comparisons were drawn between the woodchip-filled trench and natural soil. Results indicate that woodchips locally maintain or enhance soil infiltration rates, with a hydraulic conductivity up to 200 times higher in woodchip-treated soil. Additional soil measurements and analyses serve to formulate hypotheses on how the woodchips actually contribute to these effects. Dye tracer experiments revealed preferential pathways facilitated by macro fauna (earthworms) and, most likely, plant roots. This last information input has been corroborated since earthworm counts did prove to be significantly higher in the woodchips than in the soil. A chemical analysis of the soils also showed a significant enrichment of carbon and nitrogen under the trench, which may also improve soil structure and stability and perhaps indirectly enhance water infiltration capacity. In summary, the presence of woodchips in infiltration trenches improves the soil hydraulic conductivity at saturation for systems that have been in use for 5 to 10 years. These findings underscore the potential of woodchips in sustainable urban water management in order to enhance the functionality and efficiency of drainage materials by means of limiting the clogging effect.
format Article
id doaj-art-c4f6f61654704aaba4e4d3bf912d03ac
institution OA Journals
issn 1872-6259
language English
publishDate 2024-11-01
publisher Elsevier
record_format Article
series Geoderma
spelling doaj-art-c4f6f61654704aaba4e4d3bf912d03ac2025-08-20T02:14:20ZengElsevierGeoderma1872-62592024-11-0145111705710.1016/j.geoderma.2024.117057Woodchip-filled trenches: A solution to enhance urban water infiltration capacity?P. Louis0L. Delgado-Gonzalez1L. Lassabatère2S. Czarnes3J. Aubert4A. Imig5R. Clément6INRAE UR REVERSAAL, 5 Rue de la Doua, CS 20244 69625, Villeurbanne Cedex, FranceINRAE UR REVERSAAL, 5 Rue de la Doua, CS 20244 69625, Villeurbanne Cedex, FranceUniv Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Vaulx-en-Velin, 69518, FranceUniversité Claude Bernard Lyon 1, Laboratoire d’Écologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, FranceINRAE UR REVERSAAL, 5 Rue de la Doua, CS 20244 69625, Villeurbanne Cedex, FranceINRAE UR REVERSAAL, 5 Rue de la Doua, CS 20244 69625, Villeurbanne Cedex, FranceINRAE UR REVERSAAL, 5 Rue de la Doua, CS 20244 69625, Villeurbanne Cedex, France; Corresponding author.Urban water management has been increasingly relying on infiltration to limit the environmental impact of stormwater, secondary treated effluent and gray water. The infiltration systems used are generally based on non-renewable drainage materials featuring a pronounced ecological footprint (i.e., excavation and transport), such as gravel. This paper investigates the possibility of using woodchips instead of traditional drainage materials. Our study examines flow dynamics in woodchip-filled infiltration trenches at four decentralized gray water sites, on a silty clay soil. Infiltration tests were conducted using the Beerkan method to measure soil infiltration capacity both beneath the woodchip-filled trenches and in adjacent soil. Soil hydraulic functions were determined according to the BEST method, then comparisons were drawn between the woodchip-filled trench and natural soil. Results indicate that woodchips locally maintain or enhance soil infiltration rates, with a hydraulic conductivity up to 200 times higher in woodchip-treated soil. Additional soil measurements and analyses serve to formulate hypotheses on how the woodchips actually contribute to these effects. Dye tracer experiments revealed preferential pathways facilitated by macro fauna (earthworms) and, most likely, plant roots. This last information input has been corroborated since earthworm counts did prove to be significantly higher in the woodchips than in the soil. A chemical analysis of the soils also showed a significant enrichment of carbon and nitrogen under the trench, which may also improve soil structure and stability and perhaps indirectly enhance water infiltration capacity. In summary, the presence of woodchips in infiltration trenches improves the soil hydraulic conductivity at saturation for systems that have been in use for 5 to 10 years. These findings underscore the potential of woodchips in sustainable urban water management in order to enhance the functionality and efficiency of drainage materials by means of limiting the clogging effect.http://www.sciencedirect.com/science/article/pii/S0016706124002866GreywatersInfiltration testsSaturated hydraulic conductivityDrainage materialBeerkan testsEarthworm abundance
spellingShingle P. Louis
L. Delgado-Gonzalez
L. Lassabatère
S. Czarnes
J. Aubert
A. Imig
R. Clément
Woodchip-filled trenches: A solution to enhance urban water infiltration capacity?
Geoderma
Greywaters
Infiltration tests
Saturated hydraulic conductivity
Drainage material
Beerkan tests
Earthworm abundance
title Woodchip-filled trenches: A solution to enhance urban water infiltration capacity?
title_full Woodchip-filled trenches: A solution to enhance urban water infiltration capacity?
title_fullStr Woodchip-filled trenches: A solution to enhance urban water infiltration capacity?
title_full_unstemmed Woodchip-filled trenches: A solution to enhance urban water infiltration capacity?
title_short Woodchip-filled trenches: A solution to enhance urban water infiltration capacity?
title_sort woodchip filled trenches a solution to enhance urban water infiltration capacity
topic Greywaters
Infiltration tests
Saturated hydraulic conductivity
Drainage material
Beerkan tests
Earthworm abundance
url http://www.sciencedirect.com/science/article/pii/S0016706124002866
work_keys_str_mv AT plouis woodchipfilledtrenchesasolutiontoenhanceurbanwaterinfiltrationcapacity
AT ldelgadogonzalez woodchipfilledtrenchesasolutiontoenhanceurbanwaterinfiltrationcapacity
AT llassabatere woodchipfilledtrenchesasolutiontoenhanceurbanwaterinfiltrationcapacity
AT sczarnes woodchipfilledtrenchesasolutiontoenhanceurbanwaterinfiltrationcapacity
AT jaubert woodchipfilledtrenchesasolutiontoenhanceurbanwaterinfiltrationcapacity
AT aimig woodchipfilledtrenchesasolutiontoenhanceurbanwaterinfiltrationcapacity
AT rclement woodchipfilledtrenchesasolutiontoenhanceurbanwaterinfiltrationcapacity