Connectivity Index in Vague Graphs with Application in Construction

The vague graph (VG), which has recently gained a place in the family of fuzzy graph (FG), has shown good capabilities in the face of problems that cannot be expressed by fuzzy graphs and interval-valued fuzzy graphs. Connectivity index (CI) in graphs is a fundamental issue in fuzzy graph theory tha...

Full description

Saved in:
Bibliographic Details
Main Authors: Huiqin Jiang, Yongsheng Rao
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2022/9082693
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vague graph (VG), which has recently gained a place in the family of fuzzy graph (FG), has shown good capabilities in the face of problems that cannot be expressed by fuzzy graphs and interval-valued fuzzy graphs. Connectivity index (CI) in graphs is a fundamental issue in fuzzy graph theory that has wide applications in the real world. The previous definitions’ limitations in the connectivity of fuzzy graphs directed us to offer new classifications in vague graph. Hence, in this paper, we investigate connectivity index, average connectivity index, and Randic index in vague graphs with several examples. Also, one of the motives of this research is to introduce some special types of vertices such as vague connectivity enhancing vertex, vague connectivity reducing vertex, and vague connectivity neutral vertex with their properties. Finally, an application of connectivity index in the selected town for building hospital is presented.
ISSN:1607-887X