Intelligent Robust Control of Roadheader Based on Disturbance Observer
The formation of a coal mine roadway cross-section is a primary task of the boom-type roadheader. This paper proposes an intelligent robust control scheme for the cutting head trajectory of a coal mine tunneling robot, which is susceptible to unknown external disturbances, system nonlinearity, and p...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Actuators |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-0825/14/1/36 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The formation of a coal mine roadway cross-section is a primary task of the boom-type roadheader. This paper proposes an intelligent robust control scheme for the cutting head trajectory of a coal mine tunneling robot, which is susceptible to unknown external disturbances, system nonlinearity, and parameter uncertainties. First, the working conditions of the cutting section were analyzed, and a mathematical model was established. Then, a high-gain disturbance observer was designed based on the system model to analyze cutting loads and compensate for uncertainties and disturbances. A sliding mode controller was proposed using the backstepping design method, incorporating a saturation function control term to avoid chattering. The eel foraging optimization algorithm was also improved and used to tune the controller parameters. A simulation model of the system was developed for performance comparison tests. Finally, experimental verification was conducted under actual working conditions in a tunnel face, and the results demonstrated the effectiveness of the proposed control method. |
---|---|
ISSN: | 2076-0825 |