Design of Flight Attitude Simulator for Plant Protection UAV Based on Simulation of Pesticide Tank Sloshing

Changes in the flight attitude of plant protection unmanned aerial vehicles (UAVs) can lead to oscillations in the liquid level of their medicine tanks, which may affect operational accuracy and stability, and could even pose a threat to flight safety. To address this issue, this article presents th...

Full description

Saved in:
Bibliographic Details
Main Authors: Pengxiang Ren, Junke Rong, Ruichang Zhao, Pei Cao
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/15/4/822
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Changes in the flight attitude of plant protection unmanned aerial vehicles (UAVs) can lead to oscillations in the liquid level of their medicine tanks, which may affect operational accuracy and stability, and could even pose a threat to flight safety. To address this issue, this article presents the design of a flight attitude simulator for crop protection UAVs, constructed on a six-degree-of-freedom motion platform. This simulator can replicate the various flight attitudes, such as emergency stops, turns, and point rotations, of plant protection UAVs. This article initially outlines the determination and design process for the structural parameters and 3D model of the flight attitude simulator specific to plant protection UAVs. Subsequently, simulations were performed to analyze liquid sloshing in the pesticide tank under various liquid flushing ratios during flight conditions, including emergency stops, climbs, and circling maneuvers. Finally, the influence of liquid sloshing on the flight stability of the plant protection UAVs in different attitudes and with varying liquid flushing ratios is presented. These results serve as a cornerstone for optimizing the flight parameters of plant protection UAVs, analyzing the characteristics of pesticide application, and designing effective pesticide containers.
ISSN:2073-4395