A Multi-Level Semi-Automatic Procedure for the Monitoring of Bridges in Road Infrastructure Using MT-DInSAR Data
Monitoring the structural health of bridges in road infrastructure is crucial for ensuring public safety and efficient maintenance. This paper presents a multi-level semi-automatic methodology for bridge monitoring, using Multi-Temporal Differential SAR Interferometry (MT-DInSAR) data. The proposed...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/14/2377 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Monitoring the structural health of bridges in road infrastructure is crucial for ensuring public safety and efficient maintenance. This paper presents a multi-level semi-automatic methodology for bridge monitoring, using Multi-Temporal Differential SAR Interferometry (MT-DInSAR) data. The proposed approach requires a dataset of satellite-derived MT-DInSAR measurements for the Area of Interest. The methodology involves creating a georeferenced database of bridges which allows the filtering of measurement points (generally named Persistent Scatterers—PSs) using spatial queries. Since existing datasets often provide only point geometries for bridge locations, additional data sources such as OpenStreetMaps-derived repositories have been utilized to obtain linear representations of bridges. These linear features are segmented into 20 m sections, which are then converted into polygonal geometries by applying a uniform buffer. Spatial joining between the bridge polygons and PS datasets allows the extraction of key statistics, such as mean displacement velocity, PS density and coherence levels. Based on predefined velocity thresholds, warning flags are triggered, indicating the need for further in-depth analysis. Finally, an upscaling step is performed to provide a practical tool for infrastructure managers, visually categorizing bridges based on the presence of flagged pixels. The proposed approach facilitates large-scale bridge monitoring, supporting the early detection of potential structural issues. |
|---|---|
| ISSN: | 2072-4292 |