A Novel Approach to Some Proximal Contractions with Examples of Its Application
In this article, we will introduce a new generalized proximal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula>-contraction for multivalued an...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/5/382 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this article, we will introduce a new generalized proximal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula>-contraction for multivalued and single-valued mappings named <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><mi mathvariant="script">f</mi><mo>−</mo><msub><mi>θ</mi><mi>κ</mi></msub><mo>)</mo></mrow><msub><mi>C</mi><mi>P</mi></msub></msub></semantics></math></inline-formula>-proximal contraction and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><mi mathvariant="script">f</mi><mo>−</mo><msub><mi>θ</mi><mi>κ</mi></msub><mo>)</mo></mrow><msub><mi>B</mi><mi>P</mi></msub></msub></semantics></math></inline-formula>-proximal contraction. Using these newly constructed proximal contractions, we will establish new results for the coincidence best proximity point, best proximity point, and fixed point for multivalued mappings in the context of rectangular metric space. Also, we will reduce these contractions for single-valued mappings, named <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>θ</mi><mi>κ</mi></msub><mo>)</mo></mrow><msub><mi>C</mi><mi>P</mi></msub></msub></semantics></math></inline-formula>-proximal contraction and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>θ</mi><mi>κ</mi></msub><mo>)</mo></mrow><msub><mi>B</mi><mi>P</mi></msub></msub></semantics></math></inline-formula>-proximal contraction, to establish results for the coincidence proximity point, best proximity point, and fixed point results. We will give some illustrated examples for our newly generated results with graphical representations. In the last section, we will also find the solution to the equation of motion by using our defined results. |
|---|---|
| ISSN: | 2075-1680 |