Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance
TiZrMoC coatings were deposited on Si(100) substrates using a DC dual magnetron sputtering. The composition was controlled by adjusting the sputtering parameters of the TiZrMo and graphite targets. The influence of graphite target current on the resulting coating properties was explored. TEM analysi...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/14/24/1986 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850238432420298752 |
|---|---|
| author | Alexander Pogrebnjak Volodymyr Buranych Volodymyr Ivashchenko Svitlana Borba-Pogrebnjak Olga Maksakova Maria Caplovicová Alexander Goncharov Alexei Onoprienko Petro Skrynskyy Martin Sahul Piotr Konarski Piotr Budzynski Mariusz Kaminski Marek Opielak Dominik Flock Vasiliy Pelenovich Yang Bing |
| author_facet | Alexander Pogrebnjak Volodymyr Buranych Volodymyr Ivashchenko Svitlana Borba-Pogrebnjak Olga Maksakova Maria Caplovicová Alexander Goncharov Alexei Onoprienko Petro Skrynskyy Martin Sahul Piotr Konarski Piotr Budzynski Mariusz Kaminski Marek Opielak Dominik Flock Vasiliy Pelenovich Yang Bing |
| author_sort | Alexander Pogrebnjak |
| collection | DOAJ |
| description | TiZrMoC coatings were deposited on Si(100) substrates using a DC dual magnetron sputtering. The composition was controlled by adjusting the sputtering parameters of the TiZrMo and graphite targets. The influence of graphite target current on the resulting coating properties was explored. TEM analysis revealed a single-phase structure with Ti/Mo/Zr substitutional elements, columnar grains, and a strong [111] texture. Nanotwins and stacking faults were prevalent within the nanocrystals. EDX, SIMS, XRD, and XPS analyses confirmed the elemental composition and nanostructure. Computational modeling was employed to investigate the mixing behavior of the quaternary solid solutions depending on the valency electron concentration. The films exhibited exceptional mechanical properties, including a maximum hardness of 35 GPa and a wear rate of 2.11 × 10<sup>−7</sup> mm<sup>3</sup>N<sup>−1</sup>m<sup>−1</sup>, attributed to the presence of an amorphous carbon layer and optimized deposition parameters. These findings demonstrate the potential of TiZrMoC coatings for advanced applications requiring exceptional wear resistance and durability. |
| format | Article |
| id | doaj-art-c3c7db0b3ca0493cb0b26ae767e5a8c2 |
| institution | OA Journals |
| issn | 2079-4991 |
| language | English |
| publishDate | 2024-12-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Nanomaterials |
| spelling | doaj-art-c3c7db0b3ca0493cb0b26ae767e5a8c22025-08-20T02:01:28ZengMDPI AGNanomaterials2079-49912024-12-011424198610.3390/nano14241986Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear ResistanceAlexander Pogrebnjak0Volodymyr Buranych1Volodymyr Ivashchenko2Svitlana Borba-Pogrebnjak3Olga Maksakova4Maria Caplovicová5Alexander Goncharov6Alexei Onoprienko7Petro Skrynskyy8Martin Sahul9Piotr Konarski10Piotr Budzynski11Mariusz Kaminski12Marek Opielak13Dominik Flock14Vasiliy Pelenovich15Yang Bing16Biomedical Research Centre, Sumy State University, 116, Kharkivska St., 40007 Sumy, UkraineInstitute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, SlovakiaFrantsevich Institute for Problems of Materials Sciences, NAS of Ukraine, Krzhyzhanovsky 3, 03142 Kyiv, UkraineBiomedical Research Centre, Sumy State University, 116, Kharkivska St., 40007 Sumy, UkraineInstitute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, SlovakiaCentre for Nanodiagnostics of Materials, Slovak University of Technology in Bratislava, Vazovova 5, 812 43 Bratislava, SlovakiaBiomedical Research Centre, Sumy State University, 116, Kharkivska St., 40007 Sumy, UkraineFrantsevich Institute for Problems of Materials Sciences, NAS of Ukraine, Krzhyzhanovsky 3, 03142 Kyiv, UkraineFrantsevich Institute for Problems of Materials Sciences, NAS of Ukraine, Krzhyzhanovsky 3, 03142 Kyiv, UkraineInstitute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, SlovakiaŁukasiewicz Research Network–Tele and Radio Research Institute, 11, Ratuszowa St., 03-450 Warsaw, PolandFaculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Str. 36, 20-618 Lublin, PolandFaculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Str. 36, 20-618 Lublin, PolandFaculty of Transportation and Information Technology, WSEI University, 4, Projektowa Str., 20-209 Lublin, PolandInstitute of Materials Science and Engineering, Ilmenau University of Technology, Gustav-Kirchhoff Str. 1, 98693 Ilmenau, GermanyHubei Key Laboratory of Electronic Manufacturing and Packaging Integration, Wuhan University, Wuhan 430072, ChinaSchool of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, ChinaTiZrMoC coatings were deposited on Si(100) substrates using a DC dual magnetron sputtering. The composition was controlled by adjusting the sputtering parameters of the TiZrMo and graphite targets. The influence of graphite target current on the resulting coating properties was explored. TEM analysis revealed a single-phase structure with Ti/Mo/Zr substitutional elements, columnar grains, and a strong [111] texture. Nanotwins and stacking faults were prevalent within the nanocrystals. EDX, SIMS, XRD, and XPS analyses confirmed the elemental composition and nanostructure. Computational modeling was employed to investigate the mixing behavior of the quaternary solid solutions depending on the valency electron concentration. The films exhibited exceptional mechanical properties, including a maximum hardness of 35 GPa and a wear rate of 2.11 × 10<sup>−7</sup> mm<sup>3</sup>N<sup>−1</sup>m<sup>−1</sup>, attributed to the presence of an amorphous carbon layer and optimized deposition parameters. These findings demonstrate the potential of TiZrMoC coatings for advanced applications requiring exceptional wear resistance and durability.https://www.mdpi.com/2079-4991/14/24/1986TiZrMoC coatingsdual DC magnetron sputteringX-ray photoelectron spectroscopycomputational modelingnanostructure |
| spellingShingle | Alexander Pogrebnjak Volodymyr Buranych Volodymyr Ivashchenko Svitlana Borba-Pogrebnjak Olga Maksakova Maria Caplovicová Alexander Goncharov Alexei Onoprienko Petro Skrynskyy Martin Sahul Piotr Konarski Piotr Budzynski Mariusz Kaminski Marek Opielak Dominik Flock Vasiliy Pelenovich Yang Bing Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance Nanomaterials TiZrMoC coatings dual DC magnetron sputtering X-ray photoelectron spectroscopy computational modeling nanostructure |
| title | Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance |
| title_full | Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance |
| title_fullStr | Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance |
| title_full_unstemmed | Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance |
| title_short | Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance |
| title_sort | tunable tizrmoc coatings a comprehensive study of microstructure mechanical properties and wear resistance |
| topic | TiZrMoC coatings dual DC magnetron sputtering X-ray photoelectron spectroscopy computational modeling nanostructure |
| url | https://www.mdpi.com/2079-4991/14/24/1986 |
| work_keys_str_mv | AT alexanderpogrebnjak tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT volodymyrburanych tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT volodymyrivashchenko tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT svitlanaborbapogrebnjak tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT olgamaksakova tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT mariacaplovicova tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT alexandergoncharov tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT alexeionoprienko tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT petroskrynskyy tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT martinsahul tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT piotrkonarski tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT piotrbudzynski tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT mariuszkaminski tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT marekopielak tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT dominikflock tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT vasiliypelenovich tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance AT yangbing tunabletizrmoccoatingsacomprehensivestudyofmicrostructuremechanicalpropertiesandwearresistance |