Neural Network-Assisted DPD of Wideband PA Nonlinearity for Sub-Nyquist Sampling Systems

The design of conventional digital predistortion (DPD) requires an analogue-to-digital converter (ADC) with a sampling frequency that is multiple times the signal bandwidth, which is extremely challenging for sub-Nyquist sampling systems with undersampled signals. To address this, this paper propose...

Full description

Saved in:
Bibliographic Details
Main Authors: Mengqiu Liu, Xining Yang, Jian Gao, Sen Cao, Guisheng Liao, Gaopan Hou, Dawei Gao
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/4/1106
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The design of conventional digital predistortion (DPD) requires an analogue-to-digital converter (ADC) with a sampling frequency that is multiple times the signal bandwidth, which is extremely challenging for sub-Nyquist sampling systems with undersampled signals. To address this, this paper proposes a neural network (NN)-assisted wideband power amplifier (PA) DPD method for sub-Nyquist sampling systems, wherein a dual-stage architecture is designed to handle the ambiguity caused by subsampled communications signals. In the first stage, the time-delayed polynomial reconstruction method is employed to estimate the wideband DPD nonlinearity coarsely with the undersampled signals with limited pilots. In the second stage, an NN-based DPD method is proposed for the virtual training of the DPD, which learns the up-sampled DPD behavior by taking advantage of the pre-estimated DPD model and the input data signals, which reduces the length of the training sequence significantly and refines the DPD behavior efficiently. Simulation results demonstrate the efficacy of the proposed method in tackling the wideband PA nonlinearity and its ability to outperform the conventional method in terms of power spectrum, error vector magnitude, and bit error rate.
ISSN:1424-8220