Laser Ignition of Potassium Picrate with Multi-Walled Carbon Nanotube Additives

Experimental investigations of the diode-laser-induced ignition of potassium picrate (KP) with a multi-walled carbon nanotube (MWNT) additive are presented in this article. KP/MWNT composites with varying contents were prepared directly by adding different quantities of MWNTs to a KP solution after...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianhua Wang, Jinjian Chen, Chen Shen, Yucun Liu, Junming Yuan, Yanwu Yu
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/4/935
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Experimental investigations of the diode-laser-induced ignition of potassium picrate (KP) with a multi-walled carbon nanotube (MWNT) additive are presented in this article. KP/MWNT composites with varying contents were prepared directly by adding different quantities of MWNTs to a KP solution after the last synthesis step. Due to capillary action, the MWNTs homogeneously coated the surface of the KP, and some KP crystallized inside the MWNTs. The samples were characterized by scanning and transmission electron microscopy, differential thermal analysis, and laser ignition tests. At a constant laser power density, the doped KP showed a much shorter ignition delay time than the undoped KP (from 28.8 ms to 4.5 ms). Therefore, the higher the dopant MWNT ratio is, the shorter the ignition delay time is. Additionally, the more MWNTs are used to dope KP, the lower the required ignition power is.
ISSN:1420-3049