Changes in Temporal and Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper-Limb Amputees: An fMRI Study
Background. Amputation in adults is a serious procedure or traumatic outcome, one that leads to a possible “remapping” of limb representations (somatotopy) in the motor and sensory cortex. The temporal and spatial extent underlying reorganization of somatotopy is unclear. The aim of this study was t...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2021-01-01
|
| Series: | Neural Plasticity |
| Online Access: | http://dx.doi.org/10.1155/2021/8831379 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849685147678408704 |
|---|---|
| author | Bingbo Bao Lei Duan Haifeng Wei Pengbo Luo Hongyi Zhu Tao Gao Xiaoer Wei Jing Li Yuehua Li Yimin Chai Changqing Zhang Xianyou Zheng |
| author_facet | Bingbo Bao Lei Duan Haifeng Wei Pengbo Luo Hongyi Zhu Tao Gao Xiaoer Wei Jing Li Yuehua Li Yimin Chai Changqing Zhang Xianyou Zheng |
| author_sort | Bingbo Bao |
| collection | DOAJ |
| description | Background. Amputation in adults is a serious procedure or traumatic outcome, one that leads to a possible “remapping” of limb representations (somatotopy) in the motor and sensory cortex. The temporal and spatial extent underlying reorganization of somatotopy is unclear. The aim of this study was to better understand how local and global structural plasticity in sensory-motor cortical networks changes temporally and spatially after upper-limb amputation. Methods. We studied 8 healthy nonamputee control subjects and 16 complete upper-limb amputees. Resting-state MRI (rs-fMRI) was used to measure local and large-scale relative differences (compared to controls) in both the amplitude of low-frequency fluctuations (ALFF) and degree of centrality (DC) at 2 months, 6 months, and 12 months after traumatic amputation. Results. In amputees, rs-fMRI scans revealed differences in spatial patterns of ALFF and DC among brain regions over time. Significant relative increases in ALFF and DC were detected not only in the sensory and motor cortex but also in related cortical regions believed to be involved in cognition and motor planning. We observed changes in the magnitude of ALFFs in the pre- and postcentral gyrus and primary sensory cortex, as well as in the anterior cingulate, parahippocampal gyrus, and hippocampus, 2 months after the amputation. The regional distribution of increases/decreases in ALFFs and DC documented at 2-month postamputation was very different from those at 6 and 12-month postamputation. Conclusion. Local and wide-spread changes in ALFFs in the sensorimotor cortex and cognitive-related brain regions after upper-limb amputation may imply dysfunction not only in sensory and motor function but also in areas responsible for sensorimotor integration and motor planning. These results suggest that cortical reorganization after upper extremity deafferentation is temporally and spatially more complicated than previously appreciated, affecting DC in widespread regions. |
| format | Article |
| id | doaj-art-c32b01ab8d6946898c2fb0f38c0d31e0 |
| institution | DOAJ |
| issn | 2090-5904 1687-5443 |
| language | English |
| publishDate | 2021-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Neural Plasticity |
| spelling | doaj-art-c32b01ab8d6946898c2fb0f38c0d31e02025-08-20T03:23:15ZengWileyNeural Plasticity2090-59041687-54432021-01-01202110.1155/2021/88313798831379Changes in Temporal and Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper-Limb Amputees: An fMRI StudyBingbo Bao0Lei Duan1Haifeng Wei2Pengbo Luo3Hongyi Zhu4Tao Gao5Xiaoer Wei6Jing Li7Yuehua Li8Yimin Chai9Changqing Zhang10Xianyou Zheng11Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, ChinaDepartment of Orthopedic Surgery, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, ChinaDepartment of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, ChinaDepartment of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, ChinaDepartment of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, ChinaDepartment of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, ChinaInstitute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, ChinaInstitute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, ChinaInstitute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, ChinaDepartment of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, ChinaDepartment of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, ChinaDepartment of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, ChinaBackground. Amputation in adults is a serious procedure or traumatic outcome, one that leads to a possible “remapping” of limb representations (somatotopy) in the motor and sensory cortex. The temporal and spatial extent underlying reorganization of somatotopy is unclear. The aim of this study was to better understand how local and global structural plasticity in sensory-motor cortical networks changes temporally and spatially after upper-limb amputation. Methods. We studied 8 healthy nonamputee control subjects and 16 complete upper-limb amputees. Resting-state MRI (rs-fMRI) was used to measure local and large-scale relative differences (compared to controls) in both the amplitude of low-frequency fluctuations (ALFF) and degree of centrality (DC) at 2 months, 6 months, and 12 months after traumatic amputation. Results. In amputees, rs-fMRI scans revealed differences in spatial patterns of ALFF and DC among brain regions over time. Significant relative increases in ALFF and DC were detected not only in the sensory and motor cortex but also in related cortical regions believed to be involved in cognition and motor planning. We observed changes in the magnitude of ALFFs in the pre- and postcentral gyrus and primary sensory cortex, as well as in the anterior cingulate, parahippocampal gyrus, and hippocampus, 2 months after the amputation. The regional distribution of increases/decreases in ALFFs and DC documented at 2-month postamputation was very different from those at 6 and 12-month postamputation. Conclusion. Local and wide-spread changes in ALFFs in the sensorimotor cortex and cognitive-related brain regions after upper-limb amputation may imply dysfunction not only in sensory and motor function but also in areas responsible for sensorimotor integration and motor planning. These results suggest that cortical reorganization after upper extremity deafferentation is temporally and spatially more complicated than previously appreciated, affecting DC in widespread regions.http://dx.doi.org/10.1155/2021/8831379 |
| spellingShingle | Bingbo Bao Lei Duan Haifeng Wei Pengbo Luo Hongyi Zhu Tao Gao Xiaoer Wei Jing Li Yuehua Li Yimin Chai Changqing Zhang Xianyou Zheng Changes in Temporal and Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper-Limb Amputees: An fMRI Study Neural Plasticity |
| title | Changes in Temporal and Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper-Limb Amputees: An fMRI Study |
| title_full | Changes in Temporal and Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper-Limb Amputees: An fMRI Study |
| title_fullStr | Changes in Temporal and Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper-Limb Amputees: An fMRI Study |
| title_full_unstemmed | Changes in Temporal and Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper-Limb Amputees: An fMRI Study |
| title_short | Changes in Temporal and Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper-Limb Amputees: An fMRI Study |
| title_sort | changes in temporal and spatial patterns of intrinsic brain activity and functional connectivity in upper limb amputees an fmri study |
| url | http://dx.doi.org/10.1155/2021/8831379 |
| work_keys_str_mv | AT bingbobao changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy AT leiduan changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy AT haifengwei changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy AT pengboluo changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy AT hongyizhu changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy AT taogao changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy AT xiaoerwei changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy AT jingli changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy AT yuehuali changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy AT yiminchai changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy AT changqingzhang changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy AT xianyouzheng changesintemporalandspatialpatternsofintrinsicbrainactivityandfunctionalconnectivityinupperlimbamputeesanfmristudy |